ASCORBIC ACID PRODUCTION FROM YEAST

Inventors: Danilo Porro, Erba (IT); Michael Sauer, Mäder (AT)

Assignee: Biopolon S.C.a.R.L., Milan (IT)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 09/630,983
Filed: Aug. 2, 2000

Int. Cl.7 C12P 17/00; C12P 7/62
U.S. Cl. 435/117; 435/126; 435/135; 435/137; 435/254.21; 549/315
Field of Search 435/126, 135, 435/137, 254.21, 117; 549/315

References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS
WO WO99/33995 7/1999
WO WO99/64618 12/1999
WO WO00/34502 6/2000

OTHER PUBLICATIONS
EMBL/GenBank/DDJB Entry O81884.*

* cited by examiner

Primary Examiner—David Suzu
Assistant Examiner—David A. Lamberton
Attorney, Agent, or Firm—Williams, Morgan & Amerson, P.C.

ABSTRACT
Herein is disclosed a method of generating ascorbic acid from yeast. In one embodiment, the yeast is a Zygosaccharomyces spp. or a Kluyveromyces spp. growing in a medium comprising an ascorbic acid precursor. In a second embodiment the yeast is a recombinant yeast growing in a medium comprising an ascorbic acid precursor. Preferably the recombinant yeast is transformed with a coding region encoding an enzyme selected from L-galactose dehydrogenase (LGDH), L-galactono-1,4-lactone dehydrogenase (AGD), D-arabino-1,4-lactone oxidase (ALO) or L-galactono-1,4-lactone oxidase (RGLO). The ascorbic acid precursor is preferably D-glucose, L-galactose, L-galactono-1,4-lactone, or L-galactono-1,4-lactone. In another preferred embodiment the ascorbic acid is accumulated in the medium at levels greater than background. Preferably, the yield of the conversion of the precursor to ascorbic acid is preferably at least about 35%.

15 Claims, 7 Drawing Sheets
Fig. 2

A

B

Asc [mg ml⁻¹]

0 1 2 3 4 5 6

0 2 4 7

time [d]

Asc [mg ml⁻¹]

0 1 2 3 4 5 6

0 2 4 7

time [d]
Fig. 3
Fig. 4

![Graph showing intracellular ascorbic acid content](image-url)
Fig. 5

![Graph showing Ascorbic Acid in the Culture Broth (mg l⁻¹)]

- GRF18U wt
- GRF18U wt Gal
- GRF18U AGD
- GRF18U AGD Gal
- GRF18U ALO
- GRF18U ALO Gal

Ascorbic Acid in the Culture Broth (mg l⁻¹)
Fig. 7

![Graph showing ascorbic acid in culture broth over time for GRF18U wt, GRF18U ALO, and GRF18U ALO+LGDH]
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the field of ascorbic acid production. More particularly, it relates to a process for the production of L-ascorbic acid from yeast, including recombinant yeast.

2. Description of Related Art

L-ascorbic acid (Vitamin C) is a powerful water-soluble antioxidant that is vital for growth and maintenance of all tissue types in humans. One important role of ascorbic acid is its involvement in the production of collagen, an essential cellular component for connective tissues, muscles, tendons, bones, teeth and skin. Collagen is also required for the repair of blood vessels, bruising, and broken bones. Ascorbic acid helps regulate blood pressure, contributes to reduced cholesterol levels, and aids in the removal of cholesterol deposits from arterial walls. Ascorbic acid also aids in the metabolism of folic acid, regulates the uptake of iron, and is required for the conversion of the amino acids L-tyrosine and L-phenylalanine into noradrenaline. The conversion of tryptophan into serotonin, the neurotransmitter responsible for sleep, pain control, and well-being, also requires adequate supplies of ascorbic acid.

A deficiency of L-ascorbic acid can impair the production of collagen and lead to joint pain, anemia, nervousness and retarded growth. Other effects are reduced immune response and increased susceptibility to infections. The most extreme form of ascorbic acid deficiency is scurvy, a condition evidenced by swelling of the joints, bleeding gums, and the hemorrhaging of capillaries below the surface of the skin. If left untreated, scurvy is fatal.

Although intestines easily absorb ascorbic acid, it is excreted into the urine within two to four hours of ingestion. Therefore, it cannot be stored in the body. L-ascorbic acid is produced in all higher plants and in the liver or kidney of most higher animals, but not humans, bats, some birds and a variety of fishes. Therefore, humans must have access to sufficient amounts of ascorbic acid from adequate dietary sources or supplements in order to maintain optimal health.

Food sources of ascorbic acid include citrus fruits, potatoes, peppers, green leafy vegetables, tomatoes, and berries. Ascorbic acid is also commercially available as a supplement in forms such as pills, tablets, powders, wafers, and syrups.

L-Ascorbic acid is approved for use as a dietary supplement and chemical preservative by the U.S. Food and Drug Administration and is on the FDA’s list of substances generally recognized as safe. L-Ascorbic acid may be used in soft drinks as an antioxidant for flavor ingredients, in meat and meat-containing products, for curing and pickling, in flour to improve baking quality, in beer as a stabilizer, in fats and oils as an antioxidant, and in a wide variety of foods for ascorbic acid enrichment. L-Ascorbic acid may also find use in stain removers, hair-care products, plastics manufacture, photography, and water treatment.

The enzymes of the biosynthetic pathways leading to ascorbic acid have not been identified yet to completion. Current understanding of the physiological pathways in plants and animals is shown in FIG. 1.

In animals, D-glucose serves as the first precursor and the last step is catalyzed by a microsomal L-gulono-1,4-lactone oxidase. The enzyme has been isolated and characterized from different sources. The gene from rat has been cloned and sequenced (Koshizaka T. et al., 1998, J. Biol. Chem. 263, 1619–1621).

Two discrete pathways have been reported for ascorbic acid synthesis in plants. In one pathway, L-ascorbic acid is synthesized from D-glucose via L-sorbose (Loewus M. W. et al., 1990, Plant Physiol. 94, 1492–1495). Current evidence suggests that the main physiological pathway proceeds from D-glucose via L-galactose and L-galactono-1,4-lactone to L-ascorbic acid (Wheeler G. L. et al. 1998, Nature, 393, 365–369). The last two steps are catalyzed by the enzymes L-galactose dehydrogenase and L-galactono-1,4-lactone dehydrogenase. Also in this case, the last enzyme has been isolated and characterized, and the gene from Brassica oleracea has been cloned and sequenced (Ostergaard J. et al. 1997, J. Biol. Chem., 272, 30009–30016).

For use as a dietary supplement, ascorbic acid can be isolated from natural sources or synthesized chemically by the oxidation of L-sorbose as in variations of the Reichstein process (U.S. Pat. No. 2,265,121).

It remains desirable to have methods for the production of ascorbic acid by convenient processes. Two main requirements in the production of ascorbic acid are that the synthesis be enantiomerically pure, because only the L-enantiomer of ascorbic acid is biologically active, and that the environment of the final steps of the process should be non-oxidative, because ascorbic acid is very easily oxidized.

One possible approach is the production of L-ascorbic acid from microorganisms. Microorganisms can be easily grown on an industrial scale. Although the production of L-ascorbic acid from microorganisms and fungi has not been reported in the past, recent evidence proves that L-ascorbic acid analogues, and not L-ascorbic acid, are found (Huh W. K. et al. 1998, Mol. Microbiol. 30, 4, 895–903)(Hancoc R. D. et al., 2000, FEMS Microbiol. Let. 186, 245–250) (Dumbraja V. A. et al. 1987, BBA 926, 331–338)(Nick J. A. et al., 1986, Plant Science, 46, 181–187). In yeasts (Candida and Saccharomyces species), the production of etro-ascorbic acid has been reported (Huh W. K. et al., 1994, Eur. J. Biochem, 225, 1073–1079)(Huh W. K. et al., 1998, Mol. Microbiol. 30, 4, 895–903). In such yeasts, a physiological pathway has been proposed proceeding from D-glucose via D-arabinoose and D-arabino-1,4-lactone to etro-ascorbic acid (Kim S. T. et al. 1996, BBA, 1297, 1–8). The enzymes D-arabinoose dehydrogenase and D-arabino-1,4-lactone oxidase from Candida albicans as well as S. cerevisiae have been characterized. Interestingly, L-galactose and L-galactono-1,4-lactone are substrates for these activities in vitro.

In vivo production of L-ascorbic acid has been obtained by feeding L-galactono-1,4-lactone to wild-type Candida cells (International Patent Application W085/01745). Recently it has been shown that wild-type S. cerevisiae cells accumulated intracellularly L-ascorbic acid when incubated with L-galactose, L-galactono-1,4-lactone, or 1-gulono-1,4-lactone (Hancoc et al., 2000, FEMS Microbiol. Lett. 186, 245–250)(Spickett C. M. et al., 2000, Free Rad. Biol. Med. 28, 183–192).

Wild-type Candida cells incubated with L-galactono-1,4-lactone accumulate L-ascorbic acid in the medium, suggesting that this yeast has a biological mechanism for the release of the intracellular accumulated L-ascorbic acid; indeed, L-ascorbic acid is a complex molecule and it is scientifically reasonable that its accumulation in the medium
is not related to a simple diffusion process, but should depend on facilitated or active transport. This conclusion is supported by the identification and characterization of L-ascorbic acid transporters in higher eukaryotic (mammalian) cells (Daruwala R. et al., 1999, FEBS Letters. 460, 480–484). However, L-ascorbate transporters have not been described among the yeast genera. Nevertheless, while Candida cells growing in media containing L-galactono-1,4-lactone accumulate L-ascorbic acid in the medium, accumulation in the medium of L-ascorbic acid from wild-type S. cerevisiae cells has, surprisingly, never been described.

A desirable method for the large-scale production of ascorbic acid comprises the use of genetically engineered microorganisms (i.e., recombinant microorganisms). Both prokaryotic and eukaryotic microorganisms are today easily and successfully used for the production of heterologous proteins as well as for the production of heterologous metabolites. Among prokaryotes, Escherichia coli and Bacillus subtilis are often used. Among eukaryotes, the yeasts S. cerevisiae and Kluyveromyces lactis are often used. Despite the great success of these hosts, only one example has been described for the production of L-ascorbic acid by transformed microbial cells. Since only eukaryotic cells are natural L-ascorbic acid producers, it is even more surprising that only a prokaryotic transformed microbial host has been described to lead to the intracellular accumulation of L-ascorbic acid. Lee et al. (Appl. Environment. Microbiol., 1999, 65, 4685–4687), showed that the cloning of the S. cerevisiae gene encoding D-arabinono-1,4-lactone oxidase into E. coli allows the production of L-ascorbic acid from E. coli incubated with L-galactono-1,4-lactone. Accumulation of L-ascorbic acid was observed only at the intracellular level.

No experimental data have been described in the literature about the production of L-ascorbic acid from transformed eukaryotic microorganisms. Østergaard et al. cloned the gene encoding L-galactono-1,4-lactone dehydrogenase from cauliﬂower in the yeast S. cerevisiae (J. Biol. Chem., 1997, 272, 48, 30009–30016). While, in vitro, the authors found L-galactono-1,4-lactone dehydrogenase activity in the yeast cell extract (cytochrome c assay, see Østergaard et al.), no production of L-ascorbic acid was proven in vivo.

Berr et al., International Patent Appln. WO 99/04618 discuss the potential use of the plant biosynthetic pathway of ascorbic acid, special emphasis is given to the activity catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. However, characterization of the enzyme catalyzing this step has not been presented in detail. An overexpressed E. coli homologue turned out to be inactive.

Smirnoff et al., WO 99/33995, discuss the use of L-galactose dehydrogenase for production of ascorbic acid. The enzyme was puriﬁed from pea seedlings and the N-terminal protein sequence was determined. The complete sequence is not known and has not yet been reported. The L-galactose dehydrogenase enzyme partial sequence was 72% identical to amino acids 5–22 of an unidentiﬁed putative coding sequence from Arabidopsis thaliana, accession no. 3549669.

Roland et al., U.S. Pat. Nos. 4,595,659 and 4,916,068, discuss the use of non-recombinant Candida strains to convert L-galactonic substrates to L-ascorbic acid. Roland et al. described the responsible enzyme as L-galactono-1,4-lactone oxidase.

Kumar, WO 00/34502, discusses the production of L-ascorbic acid in Candida blankii and Cryptococcus dimennae yeast capable of using 2-keto-L-gulonic acid as a sole carbon source in the production. Kumar speciﬁcally excludes the production from yeast by a pathway involving L-galactonolactone oxidase or by conversion of L-galactonic precursors.

It remains desirable to have methods for the production of ascorbic acid by a convenient fermentation process.

SUMMARY OF THE INVENTION

In one embodiment, this invention relates to a method of generating ascorbic acid, comprising (i) culturing a Kluyveromyces spp. or a Zygosaccharomyces spp. yeast in a medium comprising an ascorbic acid precursor, thereby forming ascorbic acid, and (ii) isolating the ascorbic acid.

In a second embodiment, the present invention relates to a method of generating ascorbic acid, comprising (i) culturing a recombinant yeast in a medium comprising an ascorbic acid precursor, thereby forming ascorbic acid, and (ii) isolating the ascorbic acid. Preferably, the recombinant yeast accumulates ascorbic acid in the medium at a level greater than the background. Also preferably, the recombinant yeast produces ascorbic acid at a yield greater than about 35% from the precursor.

In a third embodiment, the present invention relates to a method of stabilizing ascorbic acid in a medium, comprising culturing a yeast in the medium.

The present invention provides methods for the production of ascorbic acid by a convenient fermentation process.

DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a schematic representation of the current understanding of the physiological biosynthetic pathways leading from D-glucose to L-ascorbic acid in plants or animals, respectively. The following enzymes are involved: A, L-galactono-1,4-lactone dehydrogenase (1.3.2.3), B, L-galactose dehydrogenase, C, sugar phosphatase (3.1.3.23, putative), D, hydrodase (putative), E, GDP-mannose-3,5-epimerase (5.1.3.18), F, mannose-1-phosphate guanylyltransferase (2.7.7.22), G, phosphomannomutase (5.4.2.5), H, mannose-6-phosphate isomerase (5.3.1.8), 1, glucose-6-phosphate isomerase (5.3.1.9), J, hexokinase (2.7.1.1); 1, L-gulono-1,4-lactone oxidase (1.1.3.8); 2, aldonolactonase (3.1.1.17); 2a, glucuronate lactone reductase (1.1.1.20) 3, D-glucuronate reductase (1.1.1.19); 3a, uronolactonase (3.1.1.9) or spontaneous, L-D-glucuronate kinase (2.7.1.43); 5, glucuronate-1-phosphate uridylyltransferase (2.7.7.44); 6, UDP-D-glucose dehydrogenase (1.1.2.22); 7, UTP-glucose-1-phosphate uridylyltransferase (2.7.7.9); 8, phosphoglucuronate mutase (5.4.2.2), 9, hexokinase (2.7.1.1). However, it has to be stressed that in the scope of the present invention to produce L-ascorbic acid, the enzymes useful are not limited to the enzymes of the physiological pathways.

FIGS. 2A–B shows the stability of ascorbic acid under culture conditions. Ascorbic acid was added to mineral medium (2% glucose, 0.67% YNB) and incubated under standard culture conditions for 7 days. The flask of panel A was inoculated at time 0 with non-transformed S. cerevisiae GRF18U into an initial OD550 of 0.05, whereas the flask of panel B was kept sterile. Samples were taken at the indicated times and the ascorbic acid concentration was determined. Although the ascorbic acid was stable in this medium when growing yeast was present, it was completely degraded within 7 days in sterile medium.

FIG. 3 shows the endogenous ability of yeasts to convert the precursors L-galactono-1,4-lactone (Gal) or L-gulono-
1,4-lactone (Gul) to ascorbic acid. Non-transformed yeast cells (S. cerevisiae GRF18U, W3031B and Z. bailii) were grown on mineral medium (2% glucose, 0.67% YNB) in the presence of 100 mM L-galactono-1,4-lactone or L-gulonono-
4 lactone, respectively, for 72 hr. (Initial OD660 was 0.05); “−” signifies that no precursor was added. While ascorbic acid was accumulated within the cell, no ascorbic acid could be detected in the culture broth.

FIG. 4 shows the endogenous ability of yeasts to convert L-galactono to ascorbic acid. Non-transformed S. cerevisiae (GRF18U and W3031 B), Z. bailii and K. lactis were grown on mineral medium (2% glucose, 0.67% YNB) starting from an OD250 of 0.05 overnight. Then, 250 mg L-1 L-galactono were added and the cultures were kept under standard conditions for another 24 hr before the determination of ascorbic acid. All of these strains accumulated ascorbic acid intracellularly while no ascorbic acid was measurable in the culture broth. (It is believed the high background in K. lactis is due to erythorascorbic acid, naturally present in this yeast species at higher concentrations than seen in S. cerevisiae).

FIG. 5 shows the conversion of L-galactono-1,4-lactone to ascorbic acid by recombinant yeasts. S. cerevisiae GRF18U wt (control), or transformed with AGD or ALO, respectively, were grown on mineral medium (2% glucose, 0.67% YNB) starting from an OD280 of 0.05 in the presence of 50 mM L-galactono-1,4-lactone (Gai) for 72 hr. While the control cells did not accumulate ascorbic acid in the culture medium, cells transformed with AGD or ALO unexpectedly accumulated considerable amounts (i.e. greater than background levels) of ascorbic acid in the culture medium. No ascorbic acid was detected in cultures without the addition of L-galactono-1,4-lactone (marked −).

FIG. 6 shows the conversion of L-galactono to ascorbic acid by recombinant yeasts. S. cerevisiae GRF18U wt (control), transformed with LGD, AGD, ALO, AGD and LGDH, ALO and LGDH, or AGD and ALO, respectively, were grown on mineral medium (2% glucose, 0.67% YNB) starting from an OD280 of 0.05 over night. Then 250 mg L-1 L-galactono were added and the cultures were kept under standard conditions for another 24 hr before the determination of ascorbic acid. The control cells or cells transformed with only LGDH did not accumulate ascorbic acid in the culture medium. Cells transformed with LGDH and either AGD or ALO, as well as cells transformed with AGD and ALO, accumulate considerable amounts (i.e. greater than background levels) of ascorbic acid in the medium.

FIG. 7 shows the conversion of L-galactono to ascorbic acid in a high cell density culture of recombinant yeast. S. cerevisiae GRF18U wt (control) or transformed with ALO, or LGDH and ALO, respectively, were grown on mineral medium (2% glucose, 0.67% YNB) starting from an OD280 of 0.05 over night. At time 0 the cells were concentrated 10 times and 250 mg L-1 L-galactono were added and the cultures were kept under standard conditions for 6 days. At the times indicated samples were taken and the ascorbic acid concentration in the culture broth was measured. While the control cells did not accumulate ascorbic acid in the culture medium, cells transformed with ALO alone or ALO and LGDH accumulated considerable amounts (i.e. greater than background levels) of ascorbic acid in the medium.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In one embodiment, this invention relates to a method of generating ascorbic acid, comprising (i) culturing a Kluyveromyces spp. or a Zygosaccharomyces spp. yeast in a medium comprising an ascorbic acid precursor, thereby forming ascorbic acid, and (ii) isolating the ascorbic acid. This method is based on the scientific observation that wild-type yeast of the genus Kluyveromyces or Zygossaccharomyces are capable of generating L-ascorbic acid when cultured on a medium containing an ascorbic acid pathway precursor. Preferably, the yeast is Z. bailii or K. lactis. More preferably, the yeast is Z. bailii ATCC 60483 or K. lactis PM6-7A.

The medium in which the yeast is cultured can be any medium known in the art to be suitable for this purpose. Culturing techniques and media are well known in the art. Typically, but it is not limited to, culturing is performed by aqueous fermentation in an appropriate vessel. Examples for a typical vessel for yeast fermentation comprise a shake flask or a bioreactor.

The medium comprises any component required for the growth of the yeast and one or more precursors for the production of ascorbic acid. Components for growth of the yeast and precursors for the production of ascorbic acid may or may not be identical.

The medium comprises a carbon source, such as glucose or other carbohydrates (such as sucrose, fructose, lactose, D-galactose, or hydrolysates of vegetable matter, among others). Typically, the medium also comprises a nitrogen source, either organic or inorganic, and optionally the medium may also comprise components such as amino acids; purines; pyrimidines; corn steep liquor; yeast extract; protein hydrolysates; water-soluble vitamins, such as B complex vitamins; or inorganic salts such as chlorides, hydrochlorides, phosphates, or sulfates of Ca, Mg, Na, K, Fe, Ni, Co, Cu, Mn, Mo, or Zn, among others. Further components known to one of ordinary skill in the art to be useful in yeast culturing or fermentation can also be included. The medium may or may not be buffered.

The medium also comprises an ascorbic acid precursor. The ascorbic acid precursor is any compound that, in the yeast, can be converted, either directly or through intermediate steps, into L-ascorbic acid. Ascorbic acid precursors include, but are not limited to D-glucose; trehalose; fructose; D-glucose-6-P; D-fructose-1,6-P; UDP-D-glucose; UDP-glucuronic acid; D-glucuronic acid-1-P, D-glucuronic acid; D-glucurono lactone; L-gulonic acid; D-fructose-6-P; D-mannose-6-P; D-mannose-1-P; GDP-D-mannose; GDP-L-galactose; L-galactose-1-P; L-galactose; L-gulono-1,4-lactone; or L-galactono-1,4-lactone. Preferably, the ascorbic acid precursor is selected from D-glucose; L-galactose; L-galactono-1,4-lactone; or L-gulono-1,4-lactone. Two or more ascorbic acid precursors can also be used.

During the course of the fermentation, the ascorbic acid precursor is internalized by the yeast and converted, through one or more steps, into L-ascorbic acid. The L-ascorbic acid so produced can be contained within the yeast, or can be accumulated in the medium at greater than background levels.

A preferred medium comprises glucose, YNB, and at least one of L-galactono-1,4-lactone; L-gulono-1,4-lactone; or L-galactose.

After culturing has progressed for a sufficient length of time to produce a desired concentration of L-ascorbic acid in the yeast, the culture medium, or both, the L-ascorbic acid is isolated. “Isolated,” as used herein to refer to ascorbic acid, means being brought to a state of greater purity by separation of ascorbic acid from at least one non-ascorbic acid component of the yeast or the medium. Preferably, the isolated ascorbic acid is at least about 95% pure, more preferably at least about 99% pure.
To isolate L-ascorbic acid from the yeast, the first step of isolation, after the yeast is separated from the medium, typically is lysing of the yeast by chemical or enzymatic treatment, treatment with glass beads, sonication, freeze/thaw cycling, or other known techniques. L-ascorbic acid can be purified from the membrane, protein, and nucleic acid fractions of the yeast lysate by appropriate techniques, such as centrifugation, filtration, microfiltration, ultrafiltration, nanofiltration, liquid-liquid extraction, crystallization, enzymatic treatment with nuclease or protease, or chromatography, among others.

To isolate L-ascorbic acid accumulated in the medium, the isolation comprises purifying the ascorbic acid from the medium. Purification can be performed by known techniques, such as the use of an ion exchange resin, activated carbon, microfiltration, ultrafiltration, nanofiltration, liquid-liquid extraction, crystallization, or chromatography, among others.

L-ascorbic acid can be isolated from both the yeast and the medium.

If the yeast accumulates L-ascorbic acid in the medium during the culturing step, preferably the concentration of L-ascorbic acid is stabilized or allowed to increase.

In a second embodiment, the present invention relates to a method of generating ascorbic acid, comprising (i) culturing a recombinant yeast in a medium comprising an ascorbic acid precursor, thereby forming ascorbic acid, and (ii) isolating the ascorbic acid.

A “recombinant” yeast is a yeast that contains a nucleic acid sequence not naturally occurring in the yeast or an additional copy or copies of an endogenous nucleic acid sequence, wherein the nucleic acid sequence is introduced into the yeast or an ancestor cell thereof by human action. Recombinant DNA techniques are well-known, such as in Sambrook et al., Molecular Genetics: A Laboratory Manual, Cold Spring Harbor Laboratory Press, which provides further information regarding various techniques known in the art and discussed herein. In this embodiment, a coding region of the homologous and/or heterologous gene is isolated from an organism, which possesses the gene. The organism can be a bacterium, a prokaryote, a eukaryote, a microorganism, a fungus, a plant, or an animal.

Genetic material comprising the coding region can be extracted from cells of the organism by any known technique. Thereafter, the coding region can be isolated by an appropriate technique. In one known technique, the coding region is isolated by, first, preparing a genomic DNA library or a cDNA library, and second, identifying the coding region in the genomic DNA library or cDNA library, such as by probing the library with a labeled nucleotide probe selected to be or presumed to be at least partially homologous with the coding region, determining whether expression of the coding region imparts a detectable phenotype to a library microorganism comprising the coding region, or amplifying the desired sequence by PCR. Other known techniques for isolating the coding region can also be used.

The recombinant yeast can be selected from any known genus and species of yeast. Yeasts are described by N. J. W. Kreger-van Rij, “The Yeasts,” Vol. 1 of Biology of Yeasts, Ch. 2, A. H. Rose and J. S. Harrison, Eds. Academic Press, London, 1987. For example, the yeast genus can be Saccharomyces, Zygosaccharomyces, Candida, Hansenula, Kluyveromyces, Debaryomyces, Naddsonia, Lipomyces, Torulopsis, Klœcklera, Pichia, Schizosaccharomyces, Trigonopsis, Brettanomyces, Cryptococcus, Trichosporon, Aureobasidium, Phaffia, Rhodotorula, Yarrowia, or Schwanniomyces, among others. Saccharomyces, Zygosaccharomyces, Kluyveromyces spp. are preferred. More preferably, the yeasts are S. cerevisiae, Z. bailii and K. lactis. Even more preferably, the yeast is S. cerevisiae strain GRF18U or W3031B, Z. bailii ATCC 60483, or K. lactis PM6-7A.

Preferably, a recombinant yeast of the present invention is not able to produce L-ascorbic acid from 2-keto-L-gulonic acid.

Preferably, the recombinant yeast comprises at least one coding region encoding an enzyme associated with the conversion of a carbon source to ascorbate.

In a preferred embodiment of the present invention, the coding region introduced into the recombinant yeast encodes an enzyme selected from L-galactose dehydrogenase (LGDH), L-galactono-1,4-lactone dehydrogenase (AGD), D-arabinose dehydrogenase (ARA), D-arabinono-1,4-lactone oxidase (ALO), L-gulono-1,4-lactone oxidase (RGLO).

In one more preferred embodiment, the coding region of L-galactose dehydrogenase (LGDH), L-galactono-1,4-lactone dehydrogenase (AGD), D-arabinose dehydrogenase (ARA), D-arabinono-1,4-lactone oxidase (ALO), L-gulono-1,4-lactone oxidase (RGLO) are isolated from A. thaliana or S. cerevisiae or Rattus norvegicus. It should be noted that the term “isolated,” as used herein in reference to a nucleic acid sequence, refers to the ultimate source, not the immediate source, of the coding region. That is, a coding region is “isolated” from an organism if it encodes a protein sequence substantially identical to that of the same protein purified from cells of the organism. In even more preferred embodiments, the coding regions encoding LGDH and AGD are isolated from A. thaliana, the coding regions encoding ALO and ARA are isolated from S. cerevisiae, and the coding region encoding RGLO is isolated from R. norvegicus.

In another more preferred embodiment, the amino acid sequence of the LGDH enzyme has at least about 70%, preferably about 80%, and most preferably about 90% similarity with SEQ ID NO:11; the amino acid sequence of the AGD enzyme has at least about 70%, preferably about 80%, and most preferably about 90% similarity with SEQ ID NO:1 or SEQ ID NO:3; the amino acid sequence of the ARA enzyme has at least about 70%, preferably about 80%, and most preferably about 90% similarity with SEQ ID NO:20; the amino acid sequence of the ALO enzyme has at least about 70%, preferably about 80%, and most preferably about 90% similarity with SEQ ID NO:5 or SEQ ID NO:7; the amino acid sequence of the RGLO enzyme has at least about 70%, preferably about 80%, and most preferably about 90% similarity with SEQ ID NO:5; wherein “similarity” is determined by a sequence alignment performed using the CLUSTAL program.

In another more preferred embodiment, the amino acid sequence of the LGDH enzyme has at least about 70%, preferably about 80%, and most preferably about 90% identity with SEQ ID NO:11; the amino acid sequence of the AGD enzyme has at least about 70%, preferably about 80%, and most preferably about 90% identity with SEQ ID NO:1 or SEQ ID NO:3; the amino acid sequence of the ARA enzyme has at least about 70%, preferably about 80%, and most preferably about 90% identity with SEQ ID NO:20; the amino acid sequence of the ALO enzyme has at least about 70%, preferably about 80%, and most preferably about 90% identity with SEQ ID NO:5 or SEQ ID
NO:7; the amino acid sequence of the RGLO enzyme has at least about 70%, more preferably about 80%, and most preferably about 90% identity with SEQ ID NO:9; wherein “identity” is determined by a sequence alignment performed using the CLUSTAL program.

In another more preferred embodiment, the coding region encoding the LGDH enzyme has at least about 70%, more preferably about 80%, and most preferably about 90% identity with SEQ ID NO:12; the coding region encoding the AGD enzyme has at least about 70%, more preferably about 80%, and most preferably about 90% identity with SEQ ID NO 2 or SEQ ID NO 4; the coding region encoding the ARA enzyme has at least about 70%, more preferably about 80%, and most preferably about 90% identity with SEQ ID NO 21; the coding region encoding the ALO enzyme has at least about 70%, more preferably about 80%, and most preferably about 90% identity with SEQ ID NO 6 or SEQ ID NO 8; the coding region encoding the RGLO enzyme has at least about 70%, more preferably about 80%, and most preferably about 90% identity with SEQ ID NO 10; wherein “identity” is determined by a sequence alignment performed using the CLUSTAL program.

In another preferred embodiment, wherein the enzyme is ARA, the enzyme comprises motif I and motif II of the aldo-keto reductase (AKR) superfamily, specifically the amino acid sequences GXRXDXAXXXXEXXXG (SEQ ID NO:13) and GXXN (SEQ ID NO:20), respectively (Kim S. T. et al. 1998, BBA, 1429, 29–39).

In a more preferred embodiment, the recombinant yeast further comprises at least one coding region encoding an enzyme associated with the conversion of a carbon source to L-galactose.

Preferably, a coding region encoding a desired enzyme is incorporated into the yeast in such a manner that the desired enzyme is produced in the yeast and is substantially functional. Such a yeast may be referred to herein as being “functionally transformed.”

Once the coding region has been isolated, it can be prepared for transformation into and expression in the yeast useful in the present invention. At minimum, this involves the insertion of the coding region into a shuttle vector which can replicate in the yeast. Any vector (integrative, chromosomal or episomal) can be used.

Any promoter active in the target host (homologous or heterologous, constitutive, inducible or repressible) can be used. Such insertion often involves the use of restriction endonucleases to “open up” the vector at a desired point where operable linkage to the promoter is possible, followed by ligation of the coding region into the desired point. If desired, before insertion into the vector, the coding region can be prepared for use in the target organism. This can involve altering the codons used in the coding region to more fully match the codon usage of the target organism; changing sequences in the coding region that could impair the transcription or translation of the coding region or the stability of an mRNA transcript of the coding region; or adding or removing portions encoding signaling peptides (regions of the protein encoded by the coding region that direct the protein to specific locations (e.g. an organelle, the membrane of the cell or an organelle, or extracellular secretion)), among other possible preparations known in the art. In one embodiment of the present invention, the L-galactono-1,4-lactone dehydrogenase protein (AGD) comprises a signaling peptide and the coding region encoding the L-galactono-1,4-lactone dehydrogenase also encodes the signaling peptide. In another embodiment of the present invention, the L-galactono-1,4-lactone dehydrogenase protein (AGD) does not comprise a signaling peptide and the coding region encoding the L-galactono-1,4-lactone dehydrogenase also does not encode the signaling peptide. Specifically, the AGD sequence given in SEQ ID NO:1 comprises a signaling peptide of amino acids 1–100, and the AGD sequence given in SEQ ID NO:2 comprises a signaling peptide of amino acids 1–90. As the one of skill in the art will recognize, deletion of a nucleic acid sequence encoding a signaling peptide from a longer nucleic acid sequence encoding a desired enzyme may require the addition of an in-frame ATG codon to allow for proper initiation of translation of the desired enzyme.

Regardless whether the coding region is modified, when the coding region is inserted into the vector, it is operably linked to a promoter active in the yeast. A promoter, as is known, is a DNA sequence that can direct the transcription of a nearby coding region. As already described, the promoter can be constitutive, inducible or repressible. Inducible promoters can be induced by the addition to the medium of an appropriate inducer molecule, which will be determined by the identity of the promoter. Repressible promoters can be repressed by the addition to the medium of an appropriate repressor molecule, which will be determined by the identity of the promoter. Constitutive promoters are preferred, as the use of an inducer or repressor molecule is not required. A preferred constitutive promoter is the S. cerevisiae triose-phosphateisomerase (TPi) promoter.

The vector comprising the coding region operably linked to the promoter can be a plasmid, a cosmid, or a yeast artificial chromosome, among others known in the art to be appropriate for use in yeast genera. In addition to the coding region operably linked to the promoter, the vector can also comprise other genetic elements. For example, if the vector is not expected to integrate into the yeast genome, the vector desirably comprises an origin of replication, which allows the vector to be passed on to progeny cells of a yeast comprising the vector. If integration of the vector into the yeast genome is desired, the vector can comprise sequences homologous to sequences found in the yeast genome, and can also comprise coding regions that can facilitate integration. To determine which yeast cells are transformed, the vector preferably comprises a selectable marker or screenable marker which imparts a phenotype to the yeast that distinguishes it from untransformed yeast, e.g. it survives on a medium comprising an antibiotic fatal to untransformed yeast or it metabolizes a component of the medium into a product that the untransformed yeast does not, among other phenotypes. In addition, the vector may comprise other genetic elements, such as restriction endonuclease sites and others typically found in vectors.

After the vector is prepared, with the coding region operably linked to the promoter, the yeast is transformed with the vector (i.e. the vector is introduced into at least one of the cells of a yeast population). Techniques for yeast transformation are well established, and include electroporation, microprojectile bombardment, and the LiAc/ssDNA/PEG method, among others. Yeast cells, which are transformed, can then be detected by the use of a screenable or selectable marker on the vector. It should be noted that the phrase “transformed yeast” has essentially the same meaning as “recombinant yeast,” as defined above. The transformed yeast can be one that received the vector in a transformation technique, or can be a progeny of such a yeast.

After a recombinant yeast has been obtained, the yeast is cultured in a medium. The medium is as described above.
A preferred medium comprises glucose, YNB, and L-galactono-1,4-lactone. Preferred recombinant yeasts which can be cultured in this medium include S. cerevisiae strain GRF18U yeast bearing a S. cerevisiae TPI promoter operably linked to a coding region encoding A. thaliana L-galactono-1,4-lactone dehydrogenase (AGD); and S. cerevisiae strain GRF18U yeast bearing a S. cerevisiae TPI promoter operably linked to a coding region encoding S. cerevisiae D-arabinono-1,4-lactone oxidase (ALO).

Another preferred medium comprises glucose, YNB and L-gulono-1,4-lactone. One particularly preferred recombinant yeast which can be cultured in this medium is S. cerevisiae strain GRF18U yeast bearing (i) a S. cerevisiae TPI promoter operably linked to a coding region encoding A. thaliana L-galactono-1,4-lactone dehydrogenase (AGD) and (ii) a TPI promoter operably linked to a coding region encoding A. thaliana L-galactose dehydrogenase (LGDH). A second particularly preferred transformed yeast which can be cultured in this medium is S. cerevisiae strain GRF18U yeast comprising (i) a TPI promoter operably linked to a coding region encoding S. cerevisiae D-arabinono-1,4-lactone oxidase (ALO) and (ii) a TPI promoter operably linked to a coding region encoding A. thaliana L-galactose dehydrogenase (LGDH). A third particularly preferred transformed yeast which can be cultured in this medium is S. cerevisiae strain GRF18U yeast comprising (i) a TPI promoter operably linked to a coding region encoding S. cerevisiae D-arabinono-1,4-lactone oxidase (ALO) and (ii) a TPI promoter operably linked to a coding region encoding S. cerevisiae D-arabinose dehydrogenase (ARA).

As described for non-recombinant yeast, above, during the course of the fermentation, the ascorbic acid precursor is converted, through one or more steps, into L-ascorbic acid.

While the non-recombinant yeast cells (described above) incubated in similar media typically do not accumulate ascorbic acid above background levels in the medium, surprisingly, the particularly preferred recombinant strains herein described are able to accumulate considerable amounts of L-ascorbic acid above background levels. The only exception relates to a yeast transformed with only LGDH, which does not accumulate L-ascorbic acid above background levels, that indicates the LGDH expression is not the limiting factor. The data taken together indicate that the conversion of L-galactono-1,4-lactone to ascorbic acid is the limiting factor in the pathway leading from L-galactose to ascorbic acid.

Therefore, in a preferred embodiment, the recombinant yeast accumulates L-ascorbic acid in the medium above background levels.

Isolation of the ascorbic acid from the media is as described above. Yields of ascorbic acid of greater than about 35% have been observed, as will be described in the Examples below. Therefore, in a further preferred embodiment, the recombinant yeast produce ascorbic acid with a yield higher than 35% of the precursor. The term "yield" refers to the amount of ascorbic acid (molar as well as weight/volume) produced divided by the amount of precursor consumed (molar as well as weight/volume) multiplied by 100.

The following definitions are provided in order to aid those skilled in the art in understanding the detailed description of the present invention.

"Ascorbic acid" as well as "ascorbate" as used herein, refers to L-ascorbic acid.

"Ascorbic acid precursor" is a compound that can be converted by a yeast of the present invention, either directly or through one or more intermediates, into L-ascorbic acid.

"Amplification" refers to increasing the number of copies of a desired nucleic acid molecule or to increase the activity of an enzyme, by whatsoever means.

"Codon" refers to a sequence of three nucleotides that specify a particular amino acid.

"DNA ligase" refers to an enzyme that covalently joins two pieces of double-stranded DNA.

"Electroporation" refers to a method of introducing foreign DNA into cells that uses a brief, high voltage DC charge to permeabilize the host cells, causing them to take up extra-chromosomal DNA.

"Endonuclease" refers to an enzyme that hydrolyzes double stranded DNA at internal locations.

Enzyme 1.1.3.37, D-arabinino-1,4-lactone oxidase, refers to a protein that catalyzes the conversion of D-arabinono-1,4-lactone+O₂ to D-erythroascorbate+H₂O₂. The same enzyme due to broadness of substrate range catalyzes the conversion of L-galactono-1,4-lactone+O₂ to ascorbic acid+H₂O₂. Erroronously the same enzyme is referred to as L-galactono-1,4-lactone oxidase (enzyme 1.1.3.24) (see Huh, W. K. et al, 1998, Mol. Microbiol. 30, 4, 895–903).

Enzyme 1.3.2.23, L-galactono-1,4-lactone dehydrogenase, refers to a protein that catalyzes the conversion of L-galactono-1,4-lactone+2 ferricytochrome C to L-ascorbic acid+2 ferrocytochrome C.

Enzyme 1.1.3.88, L-gulono-1,4-lactone oxidase, refers to a protein that catalyzes the oxidation of L-gulono-1,4-lactone to L-xylulo-hexulonolactone which spontaneously isomerizes to L-ascorbic acid.

Other enzymes of interest, and their classification numbers, are as follows:

- Hexokinase 2.7.1.1
- Glucose-6-P isomerase 5.3.1.9
- Mannose-6-P isomerase 5.3.1.8
- Phosphohexose isomerase 5.4.2.8
- Mannose-1-P guanylyltransferase 2.7.7.22
- GDP-Mannose 3.5.1.1
- Sugar phosphatase 3.1.2.3
- L-Galactose-dehydrogenase *)
- L-Galactono-1,4-lactone dehydrogenase 1.5.2.3
- D-Mannose kinase 2.7.1.1
- Phosphoglucuronatase 5.4.2.2
- UTP-Glucose-1-P uridylyltransferase 2.7.7.9
- UDP-D-Glucose dehydrogenase 1.1.1.22
- UDP-Glucuronate 4-epimerase 5.1.3.6
- Glucononate-1-P uridylyltransferase 2.7.7.44
- D-Gluconokinase 2.7.1.43
- D-Glucuronate reductase 3.1.1.19
- Aldolase 3.1.1.17
- L-Gulono-1,4-lactone oxidase 1.1.3.8
- Uronolactone 3.1.1.19
- Glucurononate reductase activity 1.1.1.20
- L-Galactono-1,4-lactone 3-epimerase *)
- Galacturonate-1-P uridylyltransferase *)
- Galacturonokinase 2.7.1.44
- Hexuronate (D-galacturonate) reductase *
The term “expression” refers to the transcription of a gene to produce the corresponding mRNA and translation of this mRNA to produce the corresponding gene product, i.e., a peptide, polypeptide, or protein.

The phrase “functionally linked” or “operably linked” refers to a promoter or promoter region and a coding or structural sequence in such an orientation and distance that transcription of the coding or structural sequence may be directed by the promoter or promoter region.

The term “gene” refers to chromosomal DNA, plasmid DNA, cDNA, synthetic DNA, or other DNA that encodes a peptide, polypeptide, protein, or RNA molecule, and regions flanking the coding sequence involved in the regulation of expression.

The term “genome” encompasses both the chromosomes and plasmids within a host cell. Encoding DNA of the present invention introduced into host cells can therefore be either chromosomally integrated or plasmid-localized.

“Heterologous DNA” refers to DNA from a source different than that of the recipient cell.

“Homologous DNA” refers to DNA from the same source as that of the recipient cell.

“Hybridization” refers to the ability of a strand of nucleic acid to join with a complementary strand via base pairing. Hybridization occurs when complementary sequences in the two nucleic acid strands bind to one another.

The term “medium” refers to the chemical environment of the yeast comprising any component required for the growth of the yeast or the recombinant yeast and one or more precursors for the production of ascorbic acid. Components for growth of the yeast and precursors for the production of ascorbic acid may or may not be identical.

“Open reading frame (ORF)” refers to a region of DNA or RNA encoding a peptide, polypeptide, or protein.

“Plasmid” refers to a circular, extra chromosomal, replicable piece of DNA.

“Polymerase chain reaction (PCR)” refers to an enzymatic technique to create multiple copies of one sequence of nucleic acid. Copies of DNA sequence are prepared by shuttling a DNA polymerase between two amplifiers. The basis of this amplification method is multiple cycles of temperature changes to denature, then re-anneal amplifiers, followed by extension to synthesize new DNA strands in the region located between the flanking amplifiers.

The term “promoter” or “promoter region” refers to a DNA sequence, usually found upstream (5’) to a coding sequence, that controls expression of the coding sequence by controlling production of messenger RNA (mRNA) by providing the recognition site for RNA polymerase and/or other factors necessary for start of transcription at the correct site.

A “recombinant cell” or “transformed cell” is a cell that contains a nucleic acid sequence not naturally occurring in the cell or an additional copy or copies of an endogenous nucleic acid sequence, wherein the nucleic acid sequence is introduced into the cell or an ancestor thereof by human action.

The term “recombinant vector” or “recombinant DNA or RNA construct” refers to any agent such as a plasmid, cosmid, virus, autonomously replicating sequence, plasmid, or linear or circular single-stranded or double-stranded DNA or RNA nucleotide sequence, derived from any source, capable of genomic integration or autonomous replication, comprising a nucleic acid molecule in which one or more sequences have been linked in a functionally operative manner. Such recombinant constructs or vectors are capable of introducing a 5’ regulatory sequence or promoter region and a DNA sequence for a selected gene product into a cell in such a manner that the DNA sequence is transcribed into a functional mRNA, which may or may not be translated and therefore expressed.

“Restriction enzyme” refers to an enzyme that recognizes a specific sequence of nucleotides in double-stranded DNA and cleaves both strands; also called a restriction endonuclease. Cleavage typically occurs within the restriction site or close to it.

“Selectable marker” refers to a nucleic acid sequence whose expression confers a phenotype facilitating identification of cells containing the nucleic acid sequence. Selectable markers include those, which confer resistance to toxic chemicals (e.g., ampicillin, kanamycin) or complement a nutritional deficiency (e.g., uracil, histidine, leucine).

“Screenable marker” refers to a nucleic acid sequence whose expression imparts a visually distinguishing characteristic (e.g., color changes, fluorescence).

“Transcription” refers to the process of producing an RNA copy from a DNA template.

“Transformation” refers to a process of introducing an exogenous nucleic acid sequence (e.g., a vector, plasmid, or recombinant nucleic acid molecule) into a cell in which that exogenous nucleic acid is incorporated into a chromosome or is capable of autonomous replication. A cell that has undergone transformation, or a descendant of such a cell, is “transformed” or “recombinant.” If the exogenous nucleic acid comprises a coding region encoding a desired protein, and the desired protein is produced in the transformed yeast and is substantially functional, such a transformed yeast is “functionally transformed.”

“Translation” refers to the production of protein from messenger RNA.

The term “yield” refers to the amount of ascorbic acid produced (molar or weight/volume) divided by the amount of precursor consumed (molar or weight/volume) multiplied by 100.

“Unit” of enzyme refers to the enzymatic activity and indicates the amount of micromoles of substrate converted per mg of total cell proteins per minute.

“Vector” refers to a DNA or RNA molecule (such as a plasmid, cosmid, bacteriophage, yeast artificial chromosome, or virus, among others) that carries nucleic acid sequences into a host cell. The vector or a portion of it can be inserted into the genome of the host cell.

LIST OF ABBREVIATIONS

Asc L-ascorbic acid (vitamin C)
AGD L-galactono-1,4-lactone dehydrogenase (without signaling peptide, from A. thaliana)
US 6,630,330 B1

ALO D-arabino-1,4-lactone oxidase from *S. cerevisiae*
ARA D-arabino dehydrogenase from *S. cerevisiae*
Gal L-galactono-1,4-lactone
Gul L-gulono-1,4-lactone
LGDH L-galactose dehydrogenase from *A. thaliana*
RGLO L-gulono-1,4-lactone oxidase from *R. norvegicus*
TCA trichloro acetic acid
TPI triosephosphateisomerase

EXAMPLES

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

MATERIALS AND METHODS

1. Determination of Ascorbic Acid

Ascorbic acid was determined spectrophotometrically following a method after Sullivan et al. (1955, Assoc. Off. Agr. Chem., 38, 2, 514–518). 135 μl of sample were mixed in a cuvette with 40 μl of H₂PO₄ (85%). Then 675 μl α,β-Bipyridyl (0.5%) and 135 μl FeCl₃ (1%) were added. After 10 min the absorbance at 525 nm was measured. The identity of the ascorbic acid was confirmed by HPLC (Trace Xtra, 150 mm, 5 μM cetyltrimethylammonium bromide, 50 mM KH₂PO₄ in 95/5 H₂O/Acetoniitride; Flow rate: 1 ml min⁻¹, Detection UV @254 nm) with pure L-ascorbic acid (Aldrich, A9,290-2) as standard.

2. Determination of Protein Concentration

Protein concentrations were determined following Lowry's method (Lowry O. H. et al., 1951, J. Biol. Chem. 193, 265–275), using the Bio-Rad DC Protein Assay Kit II (Cat. Nr. 500-0112) with BSA as standard.

3. Amplification of Specific Gene Sequences

To amplify specific gene sequences, PfuTurbo DNA polymerase (Stratagene #600252) was used on a GeneAmp PCR System 9700 (PE Appl. Biosystems, Inc.). Standard conditions used were: 400 μM dNTP, 0.5 μM primers, 0.5 mM MgCl₂ (in addition to the buffer), and 3.75 U Pfu per 100 μl reaction.

The sequences of the genes used have been publicly reported via Genbank, as follows:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genbank accession no(s).</th>
<th>SEQ ID NO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGD</td>
<td>AL049658 (Gene no. T17F15.200)</td>
<td>2</td>
</tr>
<tr>
<td>AGD homolog from Brassica</td>
<td>Z97068</td>
<td>4</td>
</tr>
<tr>
<td>ALO</td>
<td>U460990, AB009401</td>
<td>6, 8</td>
</tr>
<tr>
<td>RGLO</td>
<td>J03236</td>
<td>10</td>
</tr>
<tr>
<td>ARA</td>
<td>Y13134, Z50183 (ORF YBR146w)</td>
<td>21</td>
</tr>
</tbody>
</table>

The following program was used for amplification of AGD:

94° C. 5 min
94° C. 45 s
55° C. 30 s
72° C. 1 min 40 s
72° C. 7 min
4° C. ∞

The following program was used for amplification of ALO:

94° C. 5 min
94° C. 45 s
50° C. 30 s
72° C. 1 min 40 s
72° C. 7 min
4° C. ∞

The following program was used for amplification of ARA:

94° C. 5 min
94° C. 45 s
56° C. 30 s
72° C. 1 min 40 s
72° C. 7 min
4° C. ∞

The following program was used for amplification of LGDH:

94° C. 30 s
94° C. 5 s
72° C. 4 min
33 cycles
72° C. 5 min
4° C. ∞

The following program was used for amplification of RGLO:

94° C. 30 s
94° C. 5 s
72° C. 4 min
33 cycles
72° C. 5 min
4° C. ∞

Template DNA for AGD and LGDH: 50 ng plasmid cDNA library pFL61 Arabidopsis (ATCC #77500 (Minet M. et al, 1992, Plant J., 2, 417–422)). Template DNA for RGLO: 0.5 ng rat liver marathon-ready cDNA library (Clontech #7471-1). Template DNA for ALO and ARA: 50 ng genomic DNA from *S. cerevisiae* GRF18U, extracted using a standard method. PCR products were blunt end cloned into the EcoRV site of pSTBlue-1 using the perfectly blunt cloning kit from Novagen Inc. (#70191-4).
Oligonucleotides used

<table>
<thead>
<tr>
<th>SEQ ID NO:</th>
<th>Gene amplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:</td>
<td>caagaaggcctaaatgttccgttacgctcc</td>
</tr>
<tr>
<td>15:</td>
<td>aagggcttaagcggagggcgaggg</td>
</tr>
<tr>
<td>16:</td>
<td>aagggcttaagcttggcagggctc</td>
</tr>
<tr>
<td>17:</td>
<td>aagggcttaagagggcagggctc</td>
</tr>
<tr>
<td>18:</td>
<td>ccctgctgccatcagtcagc</td>
</tr>
<tr>
<td>19:</td>
<td>cctgctgccatcagtcagc</td>
</tr>
<tr>
<td>22:</td>
<td>cctgctgccatcagtcagc</td>
</tr>
<tr>
<td>23:</td>
<td>cctgctgccatcagtcagc</td>
</tr>
<tr>
<td>24:</td>
<td>ccctgctgccatcagtcagc</td>
</tr>
<tr>
<td>25:</td>
<td>ccctgctgccatcagtcagc</td>
</tr>
</tbody>
</table>

4. Plasmid Construction

The naming convention used herein is that pSTBlue-1 containing, for example, AGD in sense direction regarding its multiple cloning site (MCS) was designated pST AGD-1. In a further example, pSTBlue-1 containing AGD in antisense direction regarding its MCS was designated pST AGD-2, and so on.

Inserts were cloned using the pYX series (R&D Systems, Inc.) below. Standard procedures were employed for all cloning purposes (Sambrook J. et al., Molecular Genetics: A Laboratory Manual, Cold Spring Harbor Laboratory Press).

5. Yeast Cultivation and Examination:

Yeast strains used were S. cerevisiae GRF18U (Brambilla, L. et al., 1999, FEMS Microb. Lett. 171, 133–140), W3031B, Z. bailii ATCC 60483, and K. lactis PM6-7A (Węsólowski-Louvel, M. et al., 1992, Yeast 8, 711–719). All strains were cultivated in shake flasks in minimal medium (0.67% w/v YNB (Difco Laboratories, Detroit, Mich. #919-15), 2% w/v glucose, addition of the appropriate amino acids or adenine or uracil, respectively, to 50 mg l⁻¹) under standard conditions (shaking at 30°C). The initial optical density at 600 nm was about 0.05.

For incubation with L-galactose the cells were grown over night, then 250 mg l⁻¹ of L-galactose were added and the cells were incubated for 24 hr. For incubation with substrates other than L-galactose, the cells were grown in presence of 50 mM or 100 mM of the respective substrates for 72 hr.

Cells were recovered by centrifugation at 4000 rpm for 5 min at 4°C, washed once with cold distilled H₂O, and treated as follows: for determination of intracellular ascorbic acid, cells were resuspended in about 3 times the pellet volume of cold 10% TCA, vortexed vigorously, kept on ice for about 20 min then the supernatant was cleared from the cell debris by centrifugation.

6. Yeast Transformation:

Transformation of yeast cells was done following the standard LiAc/so-DNA/PEG method (Gietz, R. D. and Schiestl, R. H., 1996, Transforming Yeast with DNA, Methods in Mol. and Cell. Biol.). Transformed yeast are being deposited with ATCC, catalog numbers not yet assigned.

EXPERIMENTAL RESULTS

1. Stability of L-ascorbic Acid

To determine the stability of ascorbic acid under culture conditions, we added ascorbic acid to our standard medium (2% glucose, 0.67% YNB) and incubated the solution in shake flasks shaking at 30°C. FIG. 2 shows the respective results. In sterile medium, ascorbic acid is rapidly degraded (see panel B), whereas it is completely stable if growing yeast is present (see panel A). This result shows that cultivating yeast in a medium is a method of stabilizing ascorbic acid.

2. Ascorbic Acid Production From Non-transformed Yeasts

According to the literature, wild-type (wt) yeast comprises a D-arabino-1,4-lactone oxidase activity with a broad substrate specificity (Hub W. K. et al., 1994, Eur. J. Biochem. 225, 1073–1079). Such activity has been demonstrated in vitro. To determine whether the substrates or the product could cross the cell membrane, we incubated three different yeast strains (S. cerevisiae GRF18U and W3031B, as well as Z. bailii) with L-galactono-1,4-lactone (the last precursor of the plant biosynthetic pathway leading to ascorbic acid) or L-gulono-1,4-lactone (the last precursor of the animal metabolic pathway). As shown in FIG. 3, both of the substances can be internalized into the yeast cell and can be converted to ascorbic acid. No ascorbic acid was accumulated in the culture broth (not shown) but significant amounts were measured in whole cell extracts.

The next prior precursor in the plant pathway is L-galactono-1,4-lactone. FIG. 4 shows the results of incubations of yeast cells with this substrate. S. cerevisiae, Z. bailii, and K. lactis are able to produce ascorbic acid from this compound, but also in this case ascorbic acid is accumulated to a significant amount inside of the cell (FIG. 4), but the concentration in the culture medium remains under the detection limit (not shown).

3. Ascorbic Acid Production and Accumulation in the Medium From Transformed Yeasts

We cloned the homologues genes of D-arabino-1,4-lactone oxidase (ALO) and D-arabinose dehydrogenase (ARA), as well as the heterologous A. thaliana genes for L-galactono-1,4-lactone dehydrogenase (AGD) and L-galactono-1,4-lactone dehydrogenase (LDGDH). These genes were cloned into available yeast expression vectors like outlined in materials and methods. In short, the plasmids are integrative and the TPI promoter, a naturally strong and constitutive promoter of S. cerevisiae, drives the expression of the genes in question. Upon incubation of S. cerevisiae GRF18U transformed with AGD or ALO with L-galactono-1,4-lactone, the cells not only accumulated ascorbic acid intracellularly (not shown), but also, surprisingly, accumulated considerable amounts of ascorbic acid into the culture broth (FIG. 5). This was also true for the same transformed cells incubated with L-galactono-1,4-lactone (FIG. 6). Cotransformation of L-galactono-1,4-dehydrogenase or D-arabinose dehydrogenase significantly increased the ability of the respective yeast strain to convert L-galactono-1,4-lactone to ascorbic acid (FIG. 6). FIG. 7 shows data of a high-density culture converting L-galactono-1,4-lactone to ascorbic acid. The respective yeast strains were grown overnight in standard minimal medium. The next day, the cells were aseptically centrifuged and the pellet was resuspended in 1/10 of the supernatant to concentrate the cells 10 times. Then, 250 mg l⁻¹ of L-galactono-1,4-lactone were added
and the cultures were incubated under standard conditions for 6 days. After 6 days the strain transformed with ALO and LGDH accumulated over 70 mg ascorbic acid per liter culture medium. 30 mg 1^-1 ascorbic acid were accumulated intracellularly (not shown). Taking these two values together corresponds to a conversion of around 40% of the L-galactose added.

The following table summarizes the main examples reported in this invention.

<table>
<thead>
<tr>
<th>Examples of Yeast</th>
<th>Examples of Gene overexpressed</th>
<th>Examples of Converted precursors</th>
<th>intracellular</th>
<th>extracellular</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. cerevisiae</td>
<td>no</td>
<td>1-L-galactono-1,4-lactone</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-gulono-1,4-lactone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-galactone</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>K. lactis</td>
<td>no</td>
<td>1-galactone</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Z. bailii</td>
<td>no</td>
<td>1-galactono-1,4-lactone</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>AGD (from A. st Brahms)</td>
<td>1-galactono-1,4-lactone</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>ARA</td>
<td>1-galactono-1,4-lactone</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>LGDH (from A. st Brahms)</td>
<td>1-galactone</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>LGDH (from A. st Brahms) + ALO</td>
<td>1-galactone</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>ARA + ALO</td>
<td>1-galactone</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>RGLO (from B. st Yang圖片)</td>
<td>1-gulono-1,4-lactone</td>
<td>Not det.</td>
<td>Not det.</td>
</tr>
</tbody>
</table>

While the compositions and methods and yeast strains of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied without departing from the concept, spirit and scope of the invention.

REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

Lactone Oxidase in Excherichia coli, App.Env. Microb. 65, 10, 4685–4687
[16] Nishikimi, M., Noguchi, E., Yagi, K., 1978, Occurrence in Yeast of L-Galactonolactone Oxidase Which is Similar to a Key Enzyme for Ascorbic Acid Biosynthesis in Animals, L-Gulonolactone Oxidase, Arch. Biochem. Biophys. 191, 2, 479–486
21

[26] Kumar, M. 2000 Production of ascorbic acid using yeast, International patent application WO 00/34502

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 26
<210> SEQ ID NO 1
<211> LENGTH: 610
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 1

Met Leu Arg Ser Leu Leu Leu Arg Arg Ser Val Gly His Ser Leu Gly
1 5 10 15
Thr Leu Ser Pro Ser Ser Ser Thr Ile Arg Ser Ser Phe Ser Pro His
20 25 30
Arg Thr Leu Cys Thr Thr Gly Glu Thr Leu Thr Pro Pro Pro Pro
35 40 45
Pro Pro Arg Pro Pro
50 55 60
Phe Arg Lys Tyr Ala Gly Tyr Ala Leu Ala Ile Phe Ser Gly Val
65 70 75 80
Ala Thr Tyr Phe Ser Ser Phe Pro Phe Pro Gly Asn Ala Lys His Lys
85 90 95
Ala Glu Ile Phe Arg Tyr Ala Pro Leu Pro Glu Asp Leu His Thr Val
100 105 110
Ser Asn Thr Ser Gly Thr His Gly Val Gln Thr Arg Asn Phe Asn Gln
115 120 125
Pro Glu Asn Leu Ala Asp Leu Ala Val Lys Glu Ser His Glu
130 135 140
Lys Lys Leu Arg Ile Arg Pro Val Gly Ser Gly Leu Ser Pro Asn Gly
145 150 155 160
Ile Gly Leu Ser Arg Ser Gly Met Val Asn Leu Ala Leu Met Asp Lys
165 170 175
Val Leu Glu Val Asp Lys Glu Lys Arg Val Thr Val Gln Ala Gly
180 185 190
Ile Arg Val Gln Gln Leu Val Asp Ala Ile Lys Asp Tyr Gly Leu Thr
195 200 205
Leu Gln Asn Phe Ala Ser Ile Arg Glu Gln Ile Gly Gly Ile Ile
210 215 220
Gln Val Gly Ala His Gly Thr Gly Ala Arg Leu Pro Pro Ile Asp Glu
225 230 235 240
Gln Val Ile Ser Met Leu Val Thr Pro Ala Lys Gly Thr Ile Glu
245 250 255
Leu Ser Arg Glu Asp Pro Glu Leu Phe His Leu Ala Arg Cys Gly
260 265 270
Leu Gly Gly Leu Val Val Ala Glu Val Thr Leu Gln Cys Val Ala
275 280 285
Arg His Glu Leu Val Glu His Thr Tyr Val Ser Asn Leu Gln Glu Ile
290 295 300
Lys Lys Asn His Lys Leu Leu Ser Ala Asn Leu His Val Lys Tyr
305 310 315 320
Leu Tyr Ile Pro Tyr Thr Asp Thr Val Val Val Thr Cys Asn Pro
325 330 335
Val Ser Lys Thr Ser Gly Pro Pro Lys Asp Lys Pro Lys Tyr Thr Thr
340 345 350 355
Asp Glu Ala Val Glu His Val Arg Asp Leu Tyr Arg Glu Ser Ile Val
360 365
Lys Tyr Arg Val Glu Asp Ser Gly Lys Ser Pro Asp Ser Ser Gly
370 375 380
Pro Asp Ile Gin Glu Leu Ser Phe Thr Glu Leu Arg Asp Leu Leu
385 390 395 400
Ala Leu Asp Pro Leu Asn Asp Val His Val Asn Gin Ala
405 410 415
Glu Ala Glu Phe Trp Lys Ser Glu Gly Tyr Arg Val Gly Trp Ser
420 425 430
Asp Glu Ile Leu Gly Phe Asp Cys Gly Gly Gin Gin Trp Val Ser Glu
435 440 445
Ser Cys Phe Pro Ala Gin Tyr Leu Ala Asn Pro Ser Met Lys Asp Leu
450 455 460
Glu Tyr Ile Glu Glu Leu Lys Leu Ile Glu Lys Glu Ala Ile Pro
465 470 475 480
Ala Pro Ala Pro Ile Gin Glu Arg Trp Thr Ala Arg Ser Lys Ser Pro
485 490 495
Ile Ser Pro Ala Phe Ser Ser Glu Asp Asp Ile Phe Ser Trp Val
500 505 510
Gly Ile Ile Met Tyr Leu Pro Thr Ala Asp Pro Arg Gin Arg Lys Asp
515 520 525
Ile Thr Asp Glu Phe Phe His Tyr Arg His Leu Thr Gin Lys Gin Leu
530 535 540
Trp Asp Gin Phe Ser Ala Tyr Glu His Thr Ala Lys Ile Glu Ile Pro
545 550 555 560
Lys Asp Lys Glu Leu Ala Leu Gin Ala Arg Ile Arg Lys Arg
565 570 575
Phe Pro Val Asp Ala Tyr Asn Lys Ala Arg Gin Leu Gin Gin Gin Gin Gin
580 585 590
Arg Ile Leu Ser Asn Met Val Gin Lys Leu Phe Pro Val Ser Thr
595 600 605
Thr Ala
610

<210> SEQ ID NO 2
<211> LENGTH: 1833
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: A. thaliana
<400> SEQUENCE: 2
atgctccgtt ccactttctt ccagctgtccg tctgctctatt ctotggaacc ctotctctct
tttcttcta cccagtgggg ccctattttct cccattgcttc cctatcggctac gcgcttcaaa 60

aactgaca ccaccagcc gcacccgca ccacacccc caaacctcc ccaccccgc ggcacccgc
100
tcagaagct ccacccgta atacccgga taaccaagcc caagcgtcct ctttcggagtt
tctccatt tcacaatcct ctcacctcag aagctcaaac acaagaagcc tcacacttcc
cgctacaag cccttcctgc agcttcaccc acaccccttc attgagcttg gatctcatcag
gtacagact gaaacattaa tcaacccgag aacctcgtag tcotcgccag tcttctgtag
gaatcctag aagacagagtc aagccgtctg ccgcttctgc ggtgcttctc gccttaaggg
gttgggttg tctggctgag gatggtggag ctggcctcag tggtnaagtt tcttaggttg
gaatagacca aagaggagtct acagctgcaag ggctgagcat ggtgattgagc
gcctaaag actgctgctg taccttctgg gacctggcat gcttctggag gacatgtcct
700
ggcctagcta ggtcagagct ggtcttcccct ggcagcaggg aaactgaac acacacacag
ggtcagaag ccctgcttccc tctgctgctc atggtcctag gttacacagtcttg acactcagtta
tgaacagaga tccacaaacc tccacacaaat acagcactgc agctggccag aagagcttgcag
ttgctcagatc aagacattgag ctggtctctg acacagtgc gcacagctt catcattcag
tgacgcttccc gacagcagct ctgctcagag ctggttcacc gctaatgc gcaactgcccc
1200
gcctccggt ccacattcag atggtcggtg gttcaggtaaa gatacttcag ctcacttccctn
tggaannat ccaagagttc tagctgctcc tgtgagagc gagatgctcc aagagagct
1320
ggttgagct gacagtacctg aagaacctgg tttccgtgct gacactcgg ccacagctgag
1380
agtaacacct gcagacccct taacgctactaac aagacccatc acacagagctg acacacactcc
1440
gcacccct caaagaca gacagtgtc gcacagtaa agaccccatc taacgctactaac
1500
tctccagct cccagagtaa tattttctcc tgtggtgtga taactctagt cctccccgcca
1560
goacccct gcacccgaaaa gcacacccca gacatcttcc taactatag acacagtgac
1620
cgacacacat aggtggctga atttctgcag tgtgaactct ggcctaacta aaggtatacaca
1680
aagacacaag aagagcttcg agcctcagct gcacacccca cccatgctt cccaggtggt
1740
gctatcaca agacacgtgc ggcctcagct gcacacccca cccatgctt cccaggtggt
1800
gacacacagt ccacacaggt gcacccgcccc cccatgctt cccatgctt cccaggtggt
1833

<210> SEQ ID NO 3
<211> LENGTH: 600
<212> TYPE: PRT
<213> ORGANISM: Brassica oleracea
<400> SEQUENCE: 3

Met Leu Arg Ser Leu Leu Leu Leu Arg Arg Ser Asn Ala Arg Ser Leu Arg
1 5 10 15
Pro Pro Phe Pro Pro Leu Arg Thr Leu Cys Thr Ser Gly Gln Thr Leu
20 25 30
Thr Pro Ala Pro Pro
35 40 45
Ser Ala Ser Glu Lys Glu Phe Arg Lys Tyr Ala Gly Tyr Ala Ala Leu
50 55 60
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala Leu Phe Ser Gly Ala Ala Thr Tyr Phe Ser Phe Pro Phe Pro Glu</td>
<td>65</td>
</tr>
<tr>
<td>Asn Ala Lys His Lys Ala Glu Ile Phe Arg Tyr Ala Pro Leu Pro</td>
<td>85</td>
</tr>
<tr>
<td>Glu Asp Leu His Thr Val Ser Asn Trp Ser Gly Thr His Glu Val Glu</td>
<td>100</td>
</tr>
<tr>
<td>Thr Arg Asn Phe Asn Glu Pro Glu Thr Leu Ala Asp Leu Glu Ala Leu</td>
<td>115</td>
</tr>
<tr>
<td>Val Lys Glu Ala His Glu Lys Lys Asn Arg Ile Arg Pro Val Gly Ser</td>
<td>130</td>
</tr>
<tr>
<td>Gly Leu Ser Pro Asn Gly Ile Gly Leu Ser Ser Gly Ser Gly Met Val Asn</td>
<td>145</td>
</tr>
<tr>
<td>Leu Ala Leu Met Asp Lys Val Leu Glu Val Asp Lys Glu Lys Lys Arg</td>
<td>165</td>
</tr>
<tr>
<td>Val Arg Val Glu Ala Gly Ile Arg Val Glu Glu Val Leu Asp Ala Ile</td>
<td>180</td>
</tr>
<tr>
<td>Gln Glu Tyr Gly Leu Thr Leu Glu Asn Phe Ala Ser Ile Arg Glu Glu</td>
<td>195</td>
</tr>
<tr>
<td>Gln Ile Gly Gly Ile Ile Glu Val Gly Ala His Gly Thr Gly Ala Arg</td>
<td>210</td>
</tr>
<tr>
<td>Leu Pro Pro Ile Asp Glu Glu Val Ile Gly Met Lys Leu Val Thr Pro</td>
<td>225</td>
</tr>
<tr>
<td>Ala Lys Gly Thr Ile Glu Leu Ser Lys Asp Asn Asp Pro Glu Leu Phe</td>
<td>245</td>
</tr>
<tr>
<td>His Leu Ala Arg Cys Gly Leu Gly Gly Leu Gly Val Val Ala Glu Val</td>
<td>260</td>
</tr>
<tr>
<td>Thr Leu Gln Cys Val Glu Arg Glu Glu Leu Leu Glu His Thr Tyr Val</td>
<td>275</td>
</tr>
<tr>
<td>Ser Thr Leu Glu Glu Ile Lys Asn His Lys Leu Leu Ser Thr</td>
<td>290</td>
</tr>
<tr>
<td>Asn His Val Lys Tyr Leu Tyr Ile Pro Tyr Thr Thr Asp Thr Val</td>
<td>305</td>
</tr>
<tr>
<td>Val Val Thr Cys Asn Pro Val Ser Lys Trp Ser Gly Ala Pro Lys Asp</td>
<td>325</td>
</tr>
<tr>
<td>Lys Pro Lys Tyr Thr Thr Glu Ala Leu Lys His Val Arg Asp Leu</td>
<td>340</td>
</tr>
<tr>
<td>Tyr Arg Glu Ser Ile Val Lys Tyr Arg Val Glu Asp Ser Ser Lys Lys</td>
<td>355</td>
</tr>
<tr>
<td>Thr Pro Asp Ser Arg Glu Pro Asp Ile Asn Ala Leu Asp Phe Thr Glu</td>
<td>370</td>
</tr>
<tr>
<td>Leu Arg Asp Lys Leu Ile Ala Leu Asp Pro Leu Asn Asp Val His Val</td>
<td>385</td>
</tr>
<tr>
<td>Gly Lys Val Asn Glu Ala Glu Ala Glu Phe Trp Lys Lys Ser Gly</td>
<td>405</td>
</tr>
<tr>
<td>Tyr Arg Val Glu Thr Ser Asp Glu Ile Leu Gly Phe Asp Cys Gly</td>
<td>420</td>
</tr>
<tr>
<td>Gln Glu Thr Val Ser Glu Thr Cys Phe Pro Ala Gly Thr Leu Ala Lys</td>
<td>435</td>
</tr>
<tr>
<td>Pro Ser Met Lys Asp Leu Tyr Ile Glu Glu Leu Leu Leu Ile</td>
<td>450</td>
</tr>
<tr>
<td>Gly Lys Glu Ala Ile Pro Ala Pro Ser Pro Ile Glu Glu Arg Trp Thr</td>
<td>465</td>
</tr>
<tr>
<td>Gly Arg Ser Lys Ser Ser Met Ser Pro Ala Phe Ser Thr Ala Glu Glu</td>
<td></td>
</tr>
</tbody>
</table>
485 Aep Ile Phe Ser Trp Val Gly Ile Ile Met Tyr Leu Pro Thr Ala Asp
490 500 505 510
495 Pro Arg Gln Arg Lys Asp Ile Thr Asp Glu Phe Phe His Tyr Arg His
515 520 525
520 Leu Thr Gln Ala Lys Leu Trp Asp Gin Tyr Ser Ala Tyr Glu His Trp
525 530 535 540
530 Ala Lys Ile Glu Ile Pro Lys Asp Lys Glu Leu Glu Ala Leu Gin
540 550 555 560
550 Glu Arg Leu Arg Lys Arg Phe Pro Val Asp Ala Tyr Asn Lys Ala Arg
560 565 570 575
565 Arg Glu Leu Asp Pro Asn Arg Ile Leu Ser Asn Asn Met Val Glu Lys
570 585 590
580 595 600

<210> SEQ ID NO 4
<211> LENGTH: 2064
<212> TYPE: DNA
<213> ORGANISM: Brassica oleracea
<400> SEQUENCE: 4

aaattgcaac gagaatcctg ttcgaaggtg ttctagctgc ctgaactana acacactgct 60
ccgtaacct ctctctaggc gtcctacagg cctgctgctct gctgcctccct ctggccttctct 120
cggccttgc tgcacacttg ctgggatcc gactcagaag ctgctcttcct cggctcctcg 180
ttcgctgctg attcgcttcg ctgggcatct gcagaactaga aagggatctc ctggcgatcg 240
gagtgcgt cgcggcgctc tttcgctctt ccgaaaccag cggggtgcggac 300
cacagcaaga cggggaactga ttcagagtag cggcctcatg ggtgcctcct ccggttcctg 360
cgttaactag ggagttgcct ggcgactgcct tttgagaag ccggtgctgag ttttggggcg 420
cgctgctctc gctgctgctc ttacaagagac atgggtgcatc cgtggctgctc 480
ttgctgctg ctttccctcct tggcctcctt cggggtgcttc tggggggttc 540
ggtctagag cgggtgctct gactggtctg tcccagagcg gccggggttc 600
gtttctcctc cttcactcct ctgctcttcg cggcctgtgc 660
tttcctcag ggtgctgctc ctgtctcttc cggggtgctc 720
tgggcttgc cttccttgcct tgggtggctc cggggtgctc 780
gggactactc ggttcttgcct tttcgccttc aggataagcc 840
cgggcttgc cggggtgctc ctgctgctgct cttcctgtgg ccggggtgctc 900
cggggtgctc ctgctgctgct cggggtgctc ctgctgctgct 960
tgggtgctc ctgctgctgct cggggtgctc ctgctgctgct 1020
ttcattcct cttcctcct aggataagcc 1080
aggtggttc cggggtgctc ctgctgctgct cggggtgctc 1140
cggggtgctc ctgctgctgct cggggtgctc ctgctgctgct 1200
aggtggttc cggggtgctc ctgctgctgct cggggtgctc 1260
aggtggttc cggggtgctc ctgctgctgct cggggtgctc 1320
aggtggttc cggggtgctc ctgctgctgct cggggtgctc 1380
aggtggttc cggggtgctc ctgctgctgct cggggtgctc 1440
gttgatacasaanagacgcaataccagacccttcctcaccatagagcagccttggg 1500
gagttggagccctgagtcctggctccagcaactgccgagcaggacatttttcctgaggtc 1560
tggtatatccatgatatctccgacagacgacccctccgagcagagaaaggacataaacccgga 1620
attttctccatatgacacgccacacagaccaaaatgctggagcagcagtattcgtcgatttga 1680
acattgggttaaaatgctatgcaccacagacaggttgggagccctgagtcctggctccag 1740
actcagaaaaagatcggcctgtagtgacatatacagaccaaaatgctggtacagagcctgagtc 1800
cagaaatctctcgagaaatgtgttcctgtcggagcagcagagcagagcactggtacagagcctgagtc 1860
acatattgcctttgtcggagcagcagagcagagcactggtacagagcctgagtc 1920
gactcagaaaaatgtgttcctgtcggagcagcagagcagagcactggtacagagcctgagtc 1980
atgattgcttaaaatgctggtacagagcagagcactggtacagagcctgagtc 2040
ttttttcctagagcagagcactggtacagagcctgagtc 2064

<210> SEQ ID NO 5
<211> LENGTH: 526
<212> TYPE: PRT
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 5

Met Ser Thr Ile Pro Phe Arg Lys Asn Tyr Val Phe Lys Asn Trp Ala 1 5 10 15
Gly Ile Tyr Ser Ala Lys Pro Glu Arg Tyr Phe Glu Pro Ser Ser Ile 20 25 30
Asp Glu Val Val Glu Leu Val Lys Ser Ala Arg Leu Ala Glu Lys Ser 35 40 45
Leu Val Thr Val Gly Ser Gly His Ser Pro Ser Asn Met Cys Val Thr 50 55 60
Asp Glu Trp Leu Val Asn Leu Asp Arg Leu Asp Lys Val Glu Phe 65 70 75 80
Val Glu Tyr Pro Glu Leu His Tyr Ala Asp Val Thr Val Asp Ala Gly 85 90 95
Met Arg Leu Tyr Gln Leu Asn Leu Glu Phe Leu Gly Ala Lys Gly Tyr Ser 100 105 110
Ile Gln Asn Leu Gly Ser Ile Ser Glu Gln Ser Val Ala Gly Ile Ile 115 120 125
Ser Thr Gly Ser His Gly Ser Ser Pro Tyr His Gly Leu Ile Ser Ser 130 135 140
Gln Tyr Val Asn Leu Thr Ile Val Asn Gly Lys Glu Leu Lys Phe 145 150 155 160
Leu Asp Ala Gln Asn Asp Pro Glu Val Phe Lys Ala Ala Leu Leu Ser 165 170 175
Val Gly Lys Ile Gly Ile Ile Val Ser Ala Thr Ile Arg Val Val Pro 180 185 190
Gly Phe Asn Ile Lys Ser Thr Gin Glu Val Ile Thr Phe Glu Asn Leu 195 200 205
Leu Lys Gin Trp Asp Thr Leu Trp Thr Ser Ser Gin Phe Ile Arg Val 210 215 220
Trp Trp Tyr Pro Tyr Thr Arg Lys Cys Val Leu Trp Arg Gly Asn Lys 225 230 235 240
Thr Thr Asp Ala Gin Asn Gly Pro Ala Lys Ser Thr Trp Thr Gly Thr Lys 245 250 255
Leu Gly Arg Phe Phe Tyr Glu Thr Leu Leu Trp Ile Ser Thr Lys Ile
Tyr Ala Pro Leu Thr Pro Phe Val Gly Lys Phe Val Phe Lys Arg Gln 260 265 270
Tyr Gly Lys Leu Gly Lys Ser Ser Thr Gly Asp Val Asn Val Thr Asp 275 280 285
Ser Ile Ser Gly Phe Asn Met Asp Cys Leu Phe Ser Gln Phe Val Asp 290 295 300 305 310 315 320
Glu Trp Gly Cys Pro Met Asp Asn Gly Leu Glu Val Leu Arg Ser Leu 325 330 335 340
Asp His Ser Ile Ala Gin Ala Ala Ile Asn Lys Glu Phe Tyr Val His 345 350
Val Pro Met Glu Val Arg Cys Ser Asn Thr Thr Leu Pro Ser Glu Pro 355 360 365
Leu Asp Thr Ser Lys Arg Thr Asn Thr Ser Pro Gly Pro Val Tyr Gly 370 375 380
Asn Val Cys Arg Pro Phe Leu Asp Asn Thr Asn Ser His Cys Arg Phe 385 390 395 400
Ala Pro Leu Glu Asn Val Thr Asn Ser Gin Leu Thr Leu Tyr Ile Asn 405 410 415
Ala Thr Ile Tyr Arg Pro Phe Gly Cys Asn Thr Pro Ile His Lys Trp 420 425 430
Phe Thr Leu Phe Glu Asn Thr Met Met Val Ala Gly Gly Lys Pro His 435 440 445
Trp Ala Lys Asn Phe Leu Gly Ser Thr Thr Leu Ala Ala Gly Pro Val 450 455 460
Lys Asp Thr Asp Tyr Asp Phe Glu Met Arg Gly Met Ala Leu 465 470 475 480
Lys Val Glu Trp Tyr Gly Gly Asp Leu Lys Phe Arg Lys Ile 485 490 495
Arg Lys Glu Gin Asp Pro Asp Met Val Phe Leu Ala Asn Lys Gin Trp 500 505 510
Ala Ile Asn Gly Ile Ile Asp Pro Ser Glu Leu Ser Asp 515 520 525

<210> SEQ ID NO 6
<211> LENGTH: 1581
<212> TYP: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 6
agtctcacta tcocatattg aaagaactat gtgttaaaa actgagcggg aatattatcct 60
gcaasacca gacgtcattt ccacaccaagt tcacattgat aagttgctga gtgtatataag 120
agtcgcaagc tagtgaanaa aagcattgtt actgtagtgg cgygccattc tctcatttaac 180
agtgtgatct ctagatagat gcttgttaacc ttagacagat tggcanaaag taaacaagttt 240
gttganatac ctcagattaca ttagcgcgat gtcacagttg atgcggtatg gaggctttac 300
cactgtaa taaaattttgc tgcaaaaggt tctctatcc caaaaattgc ctctatctca 360
gacaaagtcg ttcgacgat atatctctac ctcagcgtag tgcctctacc ttagcaggt 420
tgactctct ctctacactg asaatgtcagt attgtagatt gtaagggcga attggtgtc 480
tggtacgac cgaagagttct aagagctgtt tctctctcag tggaaaaat 540
ggtctcacgt tcctctgat tatacgggt ttccgcggtg toaatatta ctaaactcaaa 600
gaagtgatatt ctttttgaag ctaagggata caggatgacc ttcatcgtgaa 660
tttacagag tttggtggta cccttatctc agaaatagtg tcctatgagct ggttaacaga
actacagat ccctaaatg ttccaccaag tccttgtagtg ggtcacaagc ggtgtaatct
ttctagaaat cctctattag gtctcttcac aaatctatgg ccacatccac ccaatttgtg
gaaatctgtc ttttcaacag gcataatgag aatagggaga agagctctac ttgatgattt
aatgttacag atcttctacg ccggatattg atgatactgttg tgttttcccag atttgattg
gactgggggt gcctatagga ttaagtttgtg gaagcttacac gcatttgga tcaattctattg
qgcacaggtg ccataaaccg aagaattttat gtccacagctgc ctatggaagt ccggtgca
aatatacat tacccttgag aacctttggat actaccaaga gcaaaaaacc cagttccocgt
ccctttatgg cgaattgttg agcccccatt ccgatattaca ccacatttcc caagctgattt
gctgcgttgaa aagatgttac caacagttcag tctgctgttcg atcaatatacgc taccctttat
agggcctttgg gctgtaaatc ttccatctac aatagttagta cccttttttga aataattagt
taggttaggg gcagtgagcc cactctgggac aagactttcc taggctcccac cactctagct
agtgcacacag tgaasagagg ccctggttactg ccgatattggt aatctgggag gatggaattg
aaggtttaag aagatgttgg ccagatgttcg aaaaaatccg gcaataaag aagagggca
agttcaccata atgtactttc gcggaaaaac ccagcctgga tcctataagtgt tttattagat
cotatagtg ctggccagct gc

<210> SEQ ID NO 7
<211> LENGTH: 526
<212> TYPE: PRT
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 7

Met Ser Thr Ile Pro Phe Arg Lys Aaa Tyr Val Phe Lys Aaa Trp Ala
1 5 10 15
Gly Ile Tyr Ser Ala Lys Pro Glu Arg Tyr Phe Gln Pro Ser Ser Ser Ile
20 25 30
Asp Glu Val Val Glu Leu Val Lys Ser Ala Arg Leu Ala Glu Lys Ser
35 40
Leu Val Thr Val Gly Ser Gly His Ser Pro Ser Aaa Met Cys Val Thr
50 55 60
Asp Glu Trp Leu Val Aaa Leu Asp Arg Leu Aaa Lys Val Gin Lys Phe
65 70 75 80
Val Glu Tyr Pro Glu Leu His Tyr Ala Asp Val Thr Val Asp Ala Gly
85 90
Met Arg Leu Tyr Gin Leu Aaa Glu Phe Leu Gly Aaa Lys Gly Tyr Ser
100 105 110
Ile Gin Aaa Leu Gly Ser Ile Ser Glu Gin Ser Val Aaa Gly Ile Ile
115 120 125
Ser Thr Gly Ser His Gly Ser Ser Pro Tyr His Gly Leu Ile Ser Ser
130 135 140
Gln Tyr Val Aaa Leu Thr Ile Val Aaa Gly Lys Gly Leu Lys Phe
145 150 155 160
Leu Asp Ala Glu Aaa Asp Pro Glu Val Phe Lys Ala Leu Leu Ser
165 170 175
Val Gly Lys Ile Gly Ile Val Ser Ala Thr Ile Arg Val Val Pro
180 185 190
Gly Phe Aaa Ile Lys Ser Thr Gin Glu Val Ile Thr Phe Glu Aaa Leu
195 200 205
Leu Lys Glu Trp Asp Thr Leu Trp Thr Ser Ser Glu Phe Ile Arg Val
210 215 220
Trp Trp Tyr Pro Tyr Thr Arg Lys Val Leu Trp Arg Gly Asn Lys
225 230 235 240
Thr Thr Asp Ala Glu Asn Gly Pro Ala Lys Ser Trp Trp Gly Thr Lys
245 250 255
Leu Gly Arg Phe Phe Tyr Glu Thr Leu Leu Trp Ile Ser Thr Lys Ile
260 265 270
Tyr Ala Pro Leu Thr Pro Phe Val Glu Lys Phe Val Phe Asn Arg Gin
275 280 285
Tyr Gly Lys Leu Glu Lys Ser Ser Thr Gly Asp Val Asn Val Thr Asp
290 295 300
Ser Ile Ser Gly Phe Asn Met Asp Cys Leu Phe Ser Gly Phe Val Asp
305 310 315 320
Glu Trp Gly Cys Pro Met Asp Asn Gly Leu Glu Val Leu Arg Ser Leu
325 330 335
Asp His Ser Ile Ala Gin Ala Ala Ile Asn Lys Glu Phe Tyr Val His
340 345 350
Val Pro Met Glu Val Arg Cys Ser Asn Thr Leu Pro Ser Glu Pro
355 360 365
Leu Asp Thr Ser Lys Arg Thr Asn Thr Ser Ser Gly Pro Val Tyr Gly
370 375 380
Asn Val Cys Arg Pro Phe Leu Asp Thr Pro Ser His Cys Arg Phe
385 390 395 400
Ala Pro Leu Glu Asn Val Thr Asn Ser Gin Leu Thr Tyr Ile Asn
405 410 415
Pro Thr Ile Tyr Arg Pro Phe Gly Cys Asn Thr Pro Ile His Lys Trp
420 425 430
Phe Thr Leu Phe Glu Asn Thr Met Met Val Ala Gly Gly Lys Pro His
435 440 445
Trp Ala Lys Asn Phe Leu Gly Ser Thr Thr Leu Ala Ala Gly Pro Val
450 455 460
Lys Lys Asp Thr Asp Tyr Asp Asp Phe Glu Met Arg Gly Met Ala Leu
465 470 475 480
Lys Val Glu Glu Trp Tyr Gly Glu Asp Leu Lys Phe Arg Lys Ile
485 490 495
Arg Lys Glu Gin Asp Pro Asp Val Phe Leu Ala Asn Lys Gin Trp
500 505 510
Ala Ile Ile Asn Gly Ile Ile Asp Pro Ser Glu Leu Ser Asp
515 520 525

<210> SEQ ID NO 8
<211> LENGTH: 2138
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 8

cccatggctca ctatcccaatt tagaagaaac tatgtgtaa aaaaactgggc gcgaatattat 60
ttggcaaaaa ccgaacctga attctcaacca agttcacttg atgggttgtt gcagttgtaa 120
aaagatcggca ggtattcagta aaaaaagtt agttcattgtg gtctcgggca ttctcattgt 180
aacatcctgg ttacattctga atgggttgtt aaccttcaga gattggacaa agtacaaag 240
tttgtgacc atctctgaatt acaatattgccc gatgtcaaac ttgattgccc tgtgaggcct 300
<210> SEQ ID NO 9
<211> LENGTH: 440
<212> TYPE: PRT
<213> ORGANISM: Rattus norvegicus

<400> SEQUENCE: 9

Met Val His Gly Tyr Lys Gly Val Gln Phe Gln Asn Trp Ala Lys Thr
1 5 10 15

Tyr Gly Cys Ser Pro Glu Val Tyr Tyr Gin Pro Thr Ser Val Glu Glu
20 25 30

Val Arg Glu Val Leu Ala Leu Ala Arg Glu Gin Lys Lys Lys Lys Val Lys
35 40 45
Val Val Gly Gly Gly His Ser Pro Ser Asp Ser Ile Ala Cys Thr Asp Gly
50 55 60
Phe Met Ile His Met Gly Lys Met Asn Arg Val Leu Gln Val Asp Lys
65 70 75 80
Glu Lys Lys Gln Ile Thr Val Glu Ala Gly Ile Leu Leu Ala Asp Leu
85 90 95
His Pro Gln Leu Asp Glu His Gly Leu Ala Met Ser Asn Leu Gly Ala
100 105 110
Val Ser Asp Val Thr Val Ala Gly Val Ile Gly Ser Gly Thr His Asn
115 120 125
Thr Gly Ile Lys His Gly Ile Leu Ala Thr Gin Val Val Ala Leu Thr
130 135 140
Leu Met Thr Ala Asp Gly Val Leu Glu Cys Ser Glu Ser Arg Asn
145 150 155 160
Ala Asp Val Phe Gin Ala Ala Arg Val Gin Leu Gly Gln Ile
165 170 175
Ile Leu Thr Val Thr Leu Gin Cys Val Pro Gin Phe Gin Leu Gin Glu
180 185 190
Thr Ser Phe Pro Ser Thr Leu Gin Val Leu Asp Asn Leu Asp Ser
195 200 205
His Leu Gln Arg Ser Glu Tyr Phe Arg Phe Leu Trp Phe Pro His Thr
210 215 220
Glu Asn Val Ser Ile Ile Tyr Gin Asp His Thr Asn Lys Ala Pro Ser
225 230 235 240
Ser Ala Ser Asn Trp Phe Trp Asp Tyr Ala Ile Gly Phe Tyr Leu Leu
245 250 255
Glu Phe Leu Leu Trp Thr Ser Thr Tyr Leu Pro Cys Leu Val Gin Trp
260 265 270
Ile Asn Arg Phe Phe Phe Trp Met Leu Phe Asn Cys Lys Gin Ser
275 280 285
Ser Asn Leu Ser His Lys Ile Phe Thr Tyr Cys Arg Phe Lys Gin
290 295 300
His Val Gin Asp Trp Ala Ile Pro Arg Glu Thr Lys Gin Ala Leu
305 310 315 320
Leu Glu Leu Lys Ala Met Leu Gin Ala His Pro Val Gin Leu Val Val His
325 330 335
Tyr Pro Val Glu Val Arg Phe Thr Arg Gly Asp Asp Ile Leu Leu Ser
340 345 350
Pro Cys Phe Gin Arg Asp Ser Cys Tyr Met Asn Ile Ile Met Tyr Arg
355 360 365
Pro Tyr Gly Lys Asp Val Pro Arg Leu Asp Tyr Trp Leu Ala Tyr Glu
370 375 380
Thr Ile Met Lys Phe Gly Gly Arg Pro His Trp Ala Lys Ala His
385 390 395 400
Asn Cys Thr Gin Lys Asp Phe Glu Met Tyr Pro Thr Phe His Lys
405 410 415
Phe Cys Asp Ile Arg Glu Lys Leu Asp Pro Thr Gly Met Phe Leu Asn
420 425 430
Ser Tyr Leu Gin Lys Gin Asp Val Phe Tyr
435 440

<210> SEQ ID NO 10
<211> LENGTH: 2120
<212> TYPE: DNA
<213> ORGANISM: Rattus norvegicus
<400> SEQUENCE: 10
GGATCCCT CGATCCTGGA ATCAGTCGCA ATGGTACAA AAGGGTCGAC TCTACAAATT 60
GGGCAAGAC CATATGACG ACGCCATGCC TGGCAATG AGCAGTGAAG 120
tcagagacct gcagaggctg gcctggagac aaggaagaag aagtgaagtg tgtggtgttg 180
gcacccgcc tgtcaacact gcctgacagt acggttcatt gatccacact gcaccagctg 240
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 300
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 360
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 420
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 480
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 540
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 600
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 660
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 720
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 780
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 840
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 900
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 960
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1020
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 1080
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 1140
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1200
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 1260
tgctgtcct gcacccacag ctcgatgagc atggggtgca tattgcacact cgccggagag 1320
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1380
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1440
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1500
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1560
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1620
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1680
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1740
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1800
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1860
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1920
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 1980
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 2040
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 2100
acccctctct ccaggtgacg aaggaagaag aagcaataac aagtgaagag ccgtatctcc 2160
}<210> SEQ ID NO 11
}<211> LENGTH: 319
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 11

Met Thr Lys Ile Glu Leu Arg Ala Leu Gly Asn Thr Gly Leu Lys Val
1 5 10 15
Ser Ala Val Gly Phe Gly Ala Ser Pro Leu Gly Ser Val Phe Gly Pro
20 25 30
Val Ala Glu Asp Ala Val Ala Thr Val Arg Glu Ala Phe Arg Leu
35 40 45
Gly Ile Asn Phe Phe Asp Thr Ser Pro Tyr Tyr Gly Thr Leu Ser
50 55 60
Glu Lys Met Leu Gly Lys Gly Leu Lys Ala Leu Gin Val Pro Arg Ser
65 70 75 80
Asp Tyr Ile Val Ala Thr Lys Cys Gly Arg Tyr Lys Glu Gly Phe Asp
90 95
Phe Ser Ala Glu Arg Val Arg Lys Ser Ile Asp Glu Ser Leu Glu Arg
100 105 110
Leu Gin Leu Asp Tyr Val Ile Leu His Cys His Asp Ile Glu Phe
115 120 125
Gly Ser Leu Asp Gin Ile Val Ser Glu Thr Ile Pro Ala Leu Gin Lys
130 135 140
Leu Lys Gin Glu Gly Lys Thr Arg Phe Ile Gly Ile Thr Gly Leu Pro
145 150 155 160
Leu Asp Ile Phe Thr Tyr Val Leu Asp Arg Val Pro Gly Thr Val
165 170 175
Asp Val Ile Leu Ser Tyr Cys His Tyr Gly Val Asn Asp Ser Thr Leu
180 185 190
Leu Asp Leu Leu Pro Tyr Leu Lys Ser Lys Gly Val Gly Val Ile Ser
195 200 205
 Ala Ser Pro Leu Ala Met Gly Leu Thr Glu Gin Gly Pro Gin Pro Glu
210 215 220
Trp His Pro Ala Ser Pro Glu Leu Lys Ser Ala Ser Lys Ala Ala Val
225 230 235 240
 Ala His Cys Lys Ser Lys Gly Lys Ile Thr Lys Leu Ala Leu Gin
245 250 255
Tyr Ser Leu Ala Asn Lys Ile Ser Ser Val Leu Val Gly Met Ser
260 265 270
Ser Val Ser Gin Val Gin Leu Gin Gin Gin Gin Gin Gin Gin Gin Gin
275 280 285
Ser Leu Gin Met Asp Gin Thr Leu Ser Gin Val Glu Ala Ile Leu
290 295 300
Glu Pro Val Lys Asn Leu Thr Trp Pro Ser Gly Ile His Gin Asn
305 310 315

<210> SEQ ID NO 12
<211> LENGTH: 960
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 12

atgacgaaaa tagagttcct agttttggg aaccaacggc tttaagcttt cgacgcttgg tttgtgtcct ctcgccctcc aaggtgtcct cgtccagtcc cogaagattga tggcgtcggc aacgtgacgg agtctttcct tcctggtatc aacttttccc acaccccggc ggattataaga 60

120
180
ggacactgt ctggaaaat gcttgtaag ggacataagg gtttcgaag ctctgaagt
240
gactcatag tggctctaa gctgtgtaa tataaagaag gtttgattt cogtgctag
300
agegaagaag aagatattga gcaagacctg gacaggcttc agcgtgatta tgttgacata
360
tctcattgg atgcacattga gttggtgctt ctggatgca tgtgatagca aacaattctt
420
gcttctaga aacggaacaa agaggggaag accgggctca tgtgtatcac tgtcttctag
480
ttgataatt tcaccttgg tgtttgatga gtgctctcag ggcctgctga tgtgtatttg
540
tactactgct attggggtgt tattgatcgg aacgtgctgct attactaccc tttactttgaag
600
goaacatttg tggctggtgta aatgctcttt ccttgaacaa tgccctctctc ttacgacaac
660
ggtcctcttg aagggctgcc ttggctctgt caacgcaagt ctgcaacac aagcgaagtt
720
gtcctcaga tcaaaacagt tacaagctca acacagtttag ctgtgcaata cagtttagca
780
cacaagagaga ttgctgctgt gtgggtgtgg agtcgtgtctt ctctacaggt aagagaacat
840
gttgcagcaag tcagagcttg gggctggtct aagacactct gtgcaggtgt
900
gaatattaattgggcttgctttaaatgtgtcttcattaattgataagttggggttctggctctctc
960

<210> SEQ ID NO 13
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATUER:
<223> OTHER INFORMATION: Description of Artificial Sequence: motif I of
aldo-keto reductase superfamily
<221> NAME/KEY: VARIANT
<222> LOCATION: (2)
<223> OTHER INFORMATION: Xaa = any amino acid
<221> NAME/KEY: VARIANT
<222> LOCATION: (4)...(5)
<223> OTHER INFORMATION: Xaa = any amino acid
<221> NAME/KEY: VARIANT
<222> LOCATION: (7)
<223> OTHER INFORMATION: Xaa = any amino acid
<221> NAME/KEY: VARIANT
<222> LOCATION: (9)...(11)
<223> OTHER INFORMATION: Xaa = any amino acid
<221> NAME/KEY: VARIANT
<222> LOCATION: (15)...(17)
<223> OTHER INFORMATION: Xaa = any amino acid

<400> SEQUENCE: 13
Gly Xaa Arg Xaa Xaa Asp Xaa Ala Xaa Xaa Xaa Xaa Xaa Glu Xaa Xaa
1 5 10 15
Xaa Gly

<210> SEQ ID NO 14
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATUER:
<223> OTHER INFORMATION: Description of Artificial Sequence: Forward PCR
Primer for L-galactono-1,4-lactone dehydrogenase
from A. thaliana

<400> SEQUENCE: 14
ciaagagccc taatgtttcc gttacgctcc
30

<210> SEQ ID NO 15
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATUER:
<223> OTHER INFORMATION: Description of Artificial Sequence: Reverse PCR
Primer for L-galactono-1,4-lactone dehydrogenase
from A. thaliana

<400> SEQUENCE: 15
atggcccttg aagcagcttg gggagactggg

<210> SEQ ID NO 16
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Forward PCR Primer for L-gulono-1,4-lactone oxidase from R. norvegicus

<400> SEQUENCE: 16
tgaggggtca gggtggtttg tttccg

<210> SEQ ID NO 17
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Reverse PCR Primer for L-gulono-1,4-lactone oxidase from R. norvegicus

<400> SEQUENCE: 17
tggaatcagt gtcocaggtt acaasgag

<210> SEQ ID NO 18
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Forward PCR Primer for D-arabinono-1,4-lactone oxidase from S. cerevisiae

<400> SEQUENCE: 18
ttcaccaca tgtcactact cc

<210> SEQ ID NO 19
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Reverse PCR Primer for D-arabinono-1,4-lactone oxidase from S. cerevisiae

<400> SEQUENCE: 19
aagatccta gtcggacact tc

<210> SEQ ID NO 20
<211> LENGTH: 344
<212> TYPE: PRT
<213> ORGANISM: Saccharomyces cerevisiae

<400> SEQUENCE: 20
Met Ser Ser Ser Val Ala Ser Thr Glu Asn Ile Val Glu Asn Met Leu
1 5 10 15
His Pro Lys Thr Thr Glu Ile Tyr Phe Ser Leu Asn Gly Val Arg
20 25 30
Ile Pro Ala Leu Gly Leu Gly Thr Ala Asn Pro His Glu Lys Leu Ala
35 40 45
<table>
<thead>
<tr>
<th>Glu</th>
<th>Thr</th>
<th>Lys</th>
<th>Gin</th>
<th>Ala</th>
<th>Val</th>
<th>Lys</th>
<th>Ala</th>
<th>Ala</th>
<th>Ile</th>
<th>Lys</th>
<th>Ala</th>
<th>Ala</th>
<th>Gly</th>
<th>Tyr</th>
<th>Arg</th>
<th>His</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>60</td>
<td></td>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Asp</td>
<td>Thr</td>
<td>Ala</td>
<td>Trp</td>
<td>Ala</td>
<td>Tyr</td>
<td>Glu</td>
<td>Thr</td>
<td>Glu</td>
<td>Pro</td>
<td>Phe</td>
<td>Val</td>
<td>Gly</td>
<td>Glu</td>
<td>Ala</td>
<td>65</td>
</tr>
<tr>
<td>Ile</td>
<td>Lys</td>
<td>Glu</td>
<td>Leu</td>
<td>Leu</td>
<td>Glu</td>
<td>Asp</td>
<td>Gly</td>
<td>Ser</td>
<td>Ile</td>
<td>Lys</td>
<td>Arg</td>
<td>Glu</td>
<td>Asp</td>
<td>Leu</td>
<td>Phe</td>
<td>85</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Thr</td>
<td>Lys</td>
<td>Val</td>
<td>Trp</td>
<td>Val</td>
<td>Leu</td>
<td>Trp</td>
<td>Asp</td>
<td>Gly</td>
<td>Val</td>
<td>Asp</td>
<td>Arg</td>
<td>Ser</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
<td>Glu</td>
<td>Ser</td>
<td>Leu</td>
<td>Lys</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Glu</td>
<td>Tyr</td>
<td>Val</td>
<td>Asp</td>
<td>Leu</td>
<td>Leu</td>
<td>115</td>
</tr>
<tr>
<td>Leu</td>
<td>Gin</td>
<td>His</td>
<td>Trp</td>
<td>Pro</td>
<td>Leu</td>
<td>Cys</td>
<td>Phe</td>
<td>Glu</td>
<td>Lys</td>
<td>Ile</td>
<td>Lys</td>
<td>Asp</td>
<td>Pro</td>
<td>Lys</td>
<td>Gly</td>
<td>130</td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
<td>Thr</td>
<td>Pro</td>
<td>Val</td>
<td>Asp</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Thr</td>
<td>Met</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>Tyr</td>
<td>Ala</td>
<td>Ala</td>
<td>Asp</td>
<td>Gly</td>
<td>Asp</td>
<td>Tyr</td>
<td>Leu</td>
<td>Thr</td>
<td>Gly</td>
<td>Leu</td>
<td>Glu</td>
<td>Lys</td>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Leu</td>
<td>Asp</td>
<td>Pro</td>
<td>Asn</td>
<td>Asp</td>
<td>His</td>
<td>Arg</td>
<td>Val</td>
<td>Arg</td>
<td>Ala</td>
<td>Ile</td>
<td>Gly</td>
<td>Val</td>
<td>Ser</td>
<td>180</td>
</tr>
<tr>
<td>Ann</td>
<td>Phe</td>
<td>Ser</td>
<td>Ile</td>
<td>Glu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Glu</td>
<td>Arg</td>
<td>Leu</td>
<td>Ile</td>
<td>Lys</td>
<td>Glu</td>
<td>Cys</td>
<td>Arg</td>
<td>Val</td>
<td>195</td>
</tr>
<tr>
<td>Lys</td>
<td>Pro</td>
<td>Thr</td>
<td>Val</td>
<td>Ann</td>
<td>Gin</td>
<td>Val</td>
<td>Glu</td>
<td>Thr</td>
<td>His</td>
<td>Pro</td>
<td>His</td>
<td>Leu</td>
<td>Pro</td>
<td>Gin</td>
<td>Met</td>
<td>210</td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
<td>Arg</td>
<td>Lys</td>
<td>Phe</td>
<td>Cys</td>
<td>Phe</td>
<td>Met</td>
<td>His</td>
<td>Asp</td>
<td>Ile</td>
<td>Leu</td>
<td>Thr</td>
<td>Ala</td>
<td>Tyr</td>
<td>225</td>
<td>230</td>
</tr>
<tr>
<td>Ser</td>
<td>Pro</td>
<td>Leu</td>
<td>Gly</td>
<td>Ser</td>
<td>His</td>
<td>Gly</td>
<td>Ala</td>
<td>Pro</td>
<td>Asn</td>
<td>Leu</td>
<td>Lys</td>
<td>Ile</td>
<td>Pro</td>
<td>Leu</td>
<td>Val</td>
<td>245</td>
</tr>
<tr>
<td>Lys</td>
<td>Lys</td>
<td>Leu</td>
<td>Ala</td>
<td>Glu</td>
<td>Lys</td>
<td>Tyr</td>
<td>Asn</td>
<td>Val</td>
<td>Thr</td>
<td>Gly</td>
<td>Asp</td>
<td>Leu</td>
<td>Leu</td>
<td>Ile</td>
<td>260</td>
<td>265</td>
</tr>
<tr>
<td>Ser</td>
<td>Tyr</td>
<td>His</td>
<td>Ile</td>
<td>Arg</td>
<td>Gin</td>
<td>Gly</td>
<td>Thr</td>
<td>Ile</td>
<td>Val</td>
<td>Ile</td>
<td>Pro</td>
<td>Arg</td>
<td>Ser</td>
<td>Leu</td>
<td>Ann</td>
<td>275</td>
</tr>
<tr>
<td>Pro</td>
<td>Val</td>
<td>Arg</td>
<td>Ile</td>
<td>Ser</td>
<td>Ser</td>
<td>Ile</td>
<td>Glu</td>
<td>Phe</td>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Lys</td>
<td>Asp</td>
<td>290</td>
<td>295</td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
<td>Gin</td>
<td>Glu</td>
<td>Leu</td>
<td>Asn</td>
<td>Phe</td>
<td>Gly</td>
<td>Glu</td>
<td>Lys</td>
<td>Tyr</td>
<td>Pro</td>
<td>Val</td>
<td>Arg</td>
<td>Phe</td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>Ile</td>
<td>Asp</td>
<td>Glu</td>
<td>Pro</td>
<td>Phe</td>
<td>Ala</td>
<td>Ala</td>
<td>Ile</td>
<td>Leu</td>
<td>Pro</td>
<td>Glu</td>
<td>Phe</td>
<td>Thr</td>
<td>Gly</td>
<td>Asn</td>
<td>Gly</td>
<td>325</td>
</tr>
<tr>
<td>Pro</td>
<td>Asn</td>
<td>Leu</td>
<td>Asp</td>
<td>Asn</td>
<td>Leu</td>
<td>Lys</td>
<td>Tyr</td>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 21
<211> LENGTH: 1509
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae

<400> SEQUENCE: 21

tacataatttc gttgtaagaa aagtagctgat attaataact attaatcact taactacatc 60
tacataaaatattatatgt gcottaaata ctgtttatgt aaggttattat aotcacaacaa 120
aagctgttct accttacactc cgcgttgaa aattataata atataaaggt agoctgtaaa 180	acaggggtg aaaaaggaaggggggttatggggtattcgaaggttatcttccc 240
gcgcctaat tcgataaggg tgttatatttat aatcatacctac tatctagcttt tttttag 300
cotcacaacga anactagtct gaaatattgt tcgctacaaat gacaataa atatatcttttt 360
cacgcacacaa tgcgttctagt acacagcagac tcgggtggtgg gacagcaaat ctcacagaa 420
agttagctga acaaaaaca ggcgttaaag ctgcaataca aagctgggtac aggcacattg 480
atctggttgg gcctacagag acacagccat ctttagggtga aagctataaag gatttattag 540
aagagctgct tacaaaagag ggattcttt ggataaccc aaaaagtgtgg cccgtttctat 600
gggcagcagt gccaagatca ttgaaagact cttggacctg ggaaatgaac 660
atccggctgt gcacagtctag cccgttatgg ttggaagat taaggacctc aaggggatca 720
ggtagcctgt gaaagctctg cttggatgct cttcggaaac aagttatgtc gcggacggtg 780
actatattga aactttcaag ccaatgcaaa aaaaaataac tggaccttac aagctcctctg 840
tgcggcagcttggtgcctca aaatttttccct ttcgtatttt ggaagccttc aattagggatt 900
gcaggttaca gccaacgttga aacccagcttg aaacctccac ccacattcaac caaatgaaac 960
taagaagctctgcttttag ccaagacatc tggtaacagc mtatctaccc acacagttccc 1020
atggcagcaca aacagccagaaa atccctacct gagaaagct gcgcacaaacag tcaagttca 1080
cagggatga cttgcaatttt cttttacctaa tggcaacagc ccctatcgta atttcgcagat 1140
cotcgctacaa acatgtaggt ttctcagagtt ttcgatttgcg atctttggaac aaggagtca 1200
taacagagtt gcggagtctc ggtgaacaat aaccaagctgg atatcatgct gcggcctttg 1260
cacagtctc taccagagtt acagcttccc ggcacaaacct gcacacacat tgcacttataa 1320
acacagacct ttattttatct ttttaggtct ccgtttacat tttggtcaca aaccagatct 1380
tttgcctgtg cctccgacatt aacattgctt tttagtgatt gcggaaatct tttaagttata 1440
cctgaaatata tacgccgctgt tttgcattag ttttacatgct aattcagcctg aattccctctt 1500
ataatattta 1509

<210> SEQ ID NO 22
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Forward PCR Primer for L-galactose dehydrogenase from A. thaliana

<400> SEQUENCE: 22
atggagaaaa tagagctctc ggc 23

<210> SEQ ID NO 23
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Reverse PCR Primer for L-galactose dehydrogenase from A. thaliana

<400> SEQUENCE: 23
ttagttctga tggatttccac tttg 24

<210> SEQ ID NO 24
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Saccharomyces cerevisiae

<400> SEQUENCE: 24
atgtcctttc cagtagctca aacc 24
What is claimed is:

1. A method of generating ascorbic acid, comprising:
 a) obtaining a recombinant Saccharomyces yeast strain capable of converting an ascorbic acid precursor into ascorbic acid,
 b) culturing the recombinant yeast in a medium comprising the ascorbic acid precursor, wherein the recombinant yeast produces ascorbic acid with a yield greater than about 35% from the ascorbic acid precursor, and
 c) isolating the ascorbic acid.

2. The method of claim 1, wherein the yeast is selected from Saccharomyces cerevisiae (S. cerevisiae) strain GRF18U; or S. cerevisiae strain W3031B.

3. The method of claim 1, wherein the ascorbic acid precursor is selected from L-galactono-1,4-lactone; D-glucose; L-gulono-1,4-lactone; or L-galactose.

4. The method of claim 1, wherein the isolating step comprises lysing the yeast.

5. The method of claim 1, wherein the isolating step further comprises centrifugation, filtration, microfiltration, ultrafiltration, nanofiltration, liquid-liquid extraction, crystallization, enzymatic treatment with nucleases or proteases, or chromatography.

6. The method of claim 1, wherein the recombinant yeast accumulates L-ascorbic acid in the medium at levels greater than background.

7. The method of claim 6, wherein the isolating step comprises chromatography, activated carbon, microfiltration, ultrafiltration, nanofiltration, liquid-liquid extraction, or crystallization.

8. The method of claim 1, wherein the yeast is functionally transformed with a coding region encoding L-galactose dehydrogenase (LDHG).

9. The method of claim 8, wherein the coding region encoding LDHG was isolated from Arabidopsis thaliana (A. thaliana).

10. The method of claim 8, wherein the functionally transformed yeast further comprises at least one coding region encoding an enzyme associated with the conversion of a carbon source to L-galactose.

11. The method of claim 8, wherein the coding region is linked to a promoter active in the yeast.

12. The method of claim 11, wherein the promoter is the S. cerevisiae triosephosphateisomerase (TPI) promoter.

13. The method of claim 8, wherein the yeast is further functionally transformed with a coding region encoding D-arabino-1,4-lactone oxidase (ALO).

14. The method of claim 13, wherein the coding region encoding the ALO is linked to a promoter active in the yeast.

15. The method of claim 14, wherein the promoter is the S. cerevisiae triosephosphateisomerase (TPI) promoter.

* * * * *
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 56.
Line 43, delete “L-gulactose” and insert -- L-galactose --.

Signed and Sealed this

Eighteenth Day of November, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office